Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC04813K
COMMUNICATION
Journal Name
Scheme 2. Plausible Mechanism
2
(a) D. R. Haubrich, S. J. Ward, E. Baizman, M. R. Bell, J.
Bradford, R. Ferrari, M. Miller, M. Perrone, A. K. Pierson, J. K.
Saelens, D. Luttinger, J. Pharmacol. Exp. Ther., 1990, 255
,
511; (b) P. Sharma, R.-S. Liu, Org. Lett., 2016, 18, 412; (c) H.
H. Seltzman, C. Shiner, E. E. Hirt, A. F. Gilliam, B. F. Thomas,
R. Maitra, R. Snyder, S. L. Black, P. R. Patel, Y. Mulpuri, I.
Spigelman, J. Med. Chem., 2016, 59, 7525.
3
4
(a) H. Yuan, K.-J. Bi, B. Li, R.-C. Yue, J. Ye, Y.-H. Shen, L. Shan,
H.-Z. Jin, Q.-Y. Sun, W.-D. Zhang, Org. Lett., 2013, 15, 4742;
(b) H. Yuan, K. Bi, W. Chang, R. Yue, B. Li, J. Ye, Q. Sun, H. Jin,
L. Shan, W. Zhang, Tetrahedron., 2014, 70, 9084.
(a) A. D. Palkowitz, A. L. Glasebrook, K. J. Thrasher, K. L.
Hauser, L. L. Short, D. L. Phillips, B. S. Muehl, M. Sato, P. K.
Shetler, G. J. Cullinan, T. R. Pell, H. U. Bryant, J. Med. Chem.,
1997, 40, 1407; (b) S. T. M. Orr, S. L. Ripp, T. E. Ballard, J. L.
Henderson, D. O. Scott, R. S. Obach, H. Sun, A. S. Kalgutkar, J.
Med. Chem., 2012, 55, 4896.
5
(a) S. K. Guchhait, M. Kashyap, H. Kamble, J. Org.Chem.,
2011, 76, 4753; (b) L. Wang, Y. Shao, Y. Liu, Org. Lett., 2012,
14, 3978; (c) M. Thévenin, S. Thoret, P. Grellier, J. Dubois,
Bioorg. Med. Chem., 2013, 21, 4885; (d) R. H. Vekariya, J.
Aubé, Org. Lett., 2016, 18, 3534.
6
7
(a) W. Anthony, J. Org. Chem., 1960, 25, 2049; (b) J. C.
Powers, J. Org. Chem., 1965, 30, 2534.
(a) Y. Ma, J. You, F. Song, Chem. Eur. J., 2013, 19, 1189; (b)
M.-N. Zhao, L. Ran, M. Chen, Z.-H. Ren, Y.-Y. Wang, Z.-H.
Guan, ACS Catal., 2015, 5, 1210; (c) L. Gu, C. Jin, J. Liu, H.
Zhang, M. Yuan, G. Li, Green Chem., 2016, 18, 1201.
(a) M. Nakamura, L. IIies, S. Otsubo, E. Nakamura, Org.
Lett., 2006, 8, 2803; (b) C.-H. Lin, C.-C. Chen, M.-J. Wu, Chem.
Eur. J., 2013, 19, 2578; (c) A. Gogoi, S. Guin, S. K. Rout, B. K.
Patel, Org. Lett., 2013, 15, 1802; (d) P. Zhang, T. Xiao, S.
Xiong, X. Dong, L. Zhou, Org. Lett., 2014, 16, 3264; (e) M. Hu,
R.-J. Song, J.-H. Li, Angew. Chem., Int. Ed., 2015, 54, 608; (f)
Q. Shi, P. Li, X. Zhu, L. Wang, Green Chem., 2016, 18, 4916.
that when o-alkynylated α-amino acids 1 was employed, it could
directly undergo oxidative quenching with the assistance of visible
light and O2 to generate the radical intermediate (4). Following
intramolecular addition with the C-C triple bond, the resulting
8
·-
radical intermediate (5) was then captured by O2 that was derived
from the oxidation of IrII to IrIII by air to form the peroxide radical
intermediate (6). After abstraction of a proton13, intermediate (6)
was converted into peroxide intermediate (7) which finally led to
the desired product (8) after the elimination of H2O.
9
(a) N. Rodriguez, L. J. Goossen, Chem. Soc. Rev., 2011, 40
5030; (b) A. J. J. Straathof, Chem. Rev., 2014, 114, 1871.
10 (a) Y. Yoshimi, T. Itou, M. Hatanaka, Chem. Commun., 2007,
,
5244; (b) T. Itou, Y. Yoshimi, K. Nishikawa, T. Morita, Y.
Okada, N. Ichinose, M. Hatanaka, Chem. Commun., 2010, 46
In summary, we have developed
a
photoredox-assisted
reaction and
,
intramolecular decarboxylative cyclization
6177; (c) K. Nishikawa, T. Ando, K. Maeda, T. Morita, Y.
Yoshimi, Org. Lett., 2013, 15, 636; (d) J. Xuan, Z.-G. Zhang,
W.-J. Xiao, Angew. Chem., Int. Ed., 2015, 54, 15632; (e) H.
demonstrated its utility over various o-alkynylated carboxylic acids,
which are easily synthesized and a wide range of such derivatives
are available. In contrast to previously reported methods, this
protocol enables the formation of a variety of 3-acylindoles, 3-
acylbenzofurans and 3-acylbenzothiophenes under genuinely
simple and benign conditions. We believe that this strategy will find
its wide application in organic synthesis.
Huang, K. Jia, Y. Chen, ACS Catal., 2016, 6, 4983.
11 (a) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan, A. Lei,
Angew. Chem., Int. Ed., 2014, 53, 502; (b) L. Chu, C. Ohta, Z.
Zuo, D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136
10886; (c) Q.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q.
,
Lu, W.-J. Xiao, Angew. Chem., Int. Ed., 2015, 54, 11196; (d) H.
,
Tan, H. Li, W. Ji, L. Wang, Angew. Chem., Int. Ed., 2015, 54
8374; (e) C. P. Johnston, R. T. Smith, S. Allmendinger, D. W.
C. MacMillan, Nature 2016, 536, 322; (f) W. Ji, H. Tan, M.
Wang, P. Li, L. Wang, Chem. Commun., 2016, 52, 1462; (g) S.
J. McCarver, J. X. Qiao, J. Carpenter, R. M. Borzilleri, M. A.
Poss, M. D. Eastgate, M. M. Miller, D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2017, 56,728.
Financial supports for this research from China NSFC ((Nos.
21372055, 21472030 and 21672047), and SKLUWRE (No.
2018DX02).
12 (a) U. Wille, Chem. Rev., 2013, 113, 813; (b) M. Rueda-
Becerril, O. Mahe, M. Drouin, M. B. Majewski, J. G. West, M.
O. Wolf, G. M. Sammis, J.-F. Paquin, J. Am. Chem. Soc., 2014,
Notes and references
1
(a) Y.-S. Wu, M. S. Coumar, J.-Y. Chang, H.-Y. Sun, F.-M. Kuo,
C.-C. Kuo, Y.-J. Chen, C.-Y. Chang, C.-L. Hsiao, J.-P. Liou, J.
Med. Chem., 2009, 52, 4941; (b) M. B. Hadimani, M. T.
MacDonough, A. Ghatak, T. E. Strecker, R. Lopez, M. Sriram,
B. L. Nguyen, J. J. Hall, R. J. Kessler, A. R. Shirali, L. Liu, C. M.
Garner, G. R. Pettit, E. Hamel, D. J. Chaplin, R. P. Mason, M.
L. Trawick, K. G. Pinney, J. Nat. Prod., 2013, 76, 1668; (c) T.
Vasiljevik, L. N. Franks, B. M. Ford, J. T. Douglas, P. L. Prather,
136, 2637; (c) S. Ventre, F. R. Petronijevic, D. W. C.
MacMillan, J. Am. Chem. Soc., 2015, 137, 5654; (d) Q.-B.
Zhang, Y.-L. Ban, D.-G. Zhou, P.-P. Zhou, L.-Z. Wu, Q. Liu, Org.
Lett., 2016, 18, 5256.
13 (a) T. Nobuta, S.-i. Hirashima, N. Tada, T. Miura, A. Itoh, Org.
Lett., 2011, 13, 2576; (b) H. Sun, C. Yang, F. Gao, Z. Li, W. Xia,
Org. Lett., 2013, 15, 624; (c) K. Wang, L.-G. Meng, Q. Zhang,
L. Wang, Green Chem., 2016, 18, 2864.
W. E. Fantegrossi, T. E. Prisinzano, J. Med. Chem., 2013, 56
4537.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins