R. S. Robinson, M. C. Dovey, D. Gravestock
FULL PAPER
1.55 mL, 2.48 mmol) and propargyl bromide (80 % w/w solution in
toluene, 0.38 mL, 0.40 g, 3.4 mmol) to afford 21a as a colourless
oil (0.29 g, 1.5 mmol, 66 %) after radial chromatography (EtOAc/
Hex, 1:3); Rf 0.61 (EtOAc/Hex, 1:1). 1H NMR (500 MHz, CDCl3):
δ (ppm) = 1.26 (t, J = 7.1 Hz, 3 H, OCH2CH3), 1.90 (t, J = 2.6 Hz,
1 H, CϵCH), 2.00 (m, 2 H, NCH2CH2), 2.72 (t, J = 7.8 Hz, 2 H,
NCH2CH2CH2), 3.08 (d, J = 2.6 Hz, 2 H, CH2CϵCH), 3.51 (t, J
= 7.0 Hz, 2 H, NCH2), 4.14 (q, J = 7.3 Hz, 2 H, OCH2CH3), 8.14
(br., 1 H, NH). 13C NMR (125 MHz, CDCl3): δ (ppm) = 14.6
(OCH2CH3), 17.0 (CH2CϵCH), 21.8 (NCH2CH2), 30.8
(CH2CH2C=C), 47.2 (NCH2), 58.9 (OCH2CH3), 66.4 (CϵCH),
84.2 (CϵCH), 84.5 (NC=C), 165.2 (NC=C), 169.4 (C=O). IR (thin
Note: Spectral and physical data for the compounds shown below
matched those acquired for the same compounds in prior reactions.
Ethyl 5-Methyl-2,3-dihydro-1H-pyrrolizine-7-carboxylate (20a): 21a
(0.25 g, 1.29 mmol) was treated with AgNO3 (44 mg, 0.26 mmol)
and irradiated to afford 20a as a colourless crystalline solid (0.19 g,
0.97 mmol, 75 %).
Ethyl 3-Methyl-5,6,7,8-tetrahydro-1-indolizinecarboxylate (20b):
21b (48 mg, 0.23 mmol) was treated with AgNO3 (8 mg,
0.05 mmol) and irradiated to afford 20b as a colourless oil (36 mg,
0.17 mmol, 75 %).
Ethyl 3-Methyl-6,7,8,9-tetrahydro-5H-pyrrolo[1,2-a]azepine-1-car-
boxylate (20c): 21c (98 mg, 0.44 mmol) was treated with AgNO3
(15 mg, 0.09 mmol) and irradiated to afford 20c as a colourless oil
(70 mg, 0.32 mmol, 71 %).
film, CHCl ): ν = 3362, 3307, 2972, 2104, 1654, 1596, 1248,
˜
3
1212 cm–1. MS (EIMS): m/z (%) = 193 [M+] (35), 164 (100), 120
(74), 118 (46), 91 (22). HRMS: found m/z = 193.1091 [M+],
C11H23NO2 requires 193.1103.
Ethyl (2Z)-2-Piperidin-2-ylidenepent-4-ynoate (21b): 11b (0.38 g,
2.25 mmol) was treated with nBuLi (1.6 m solution in hexane,
1.54 mL, 2.47 mmol) and propargyl bromide (80 % w/w solution in
toluene, 0.38 mL, 0.40 g, 3.37 mmol) to afford 21b as a colourless
oil (0.16 g, 0.79 mmol, 35 %) and ethyl 2-prop-2-ynyl-2-(3,4,5,6-
tetrahydropyridin-2-yl)pent-4-ynoate as a colourless oil (70 mg,
0.29 mmol, 13 %) after radial chromatography (EtOAc/Hex, 1:9);
Rf 0.37 and 0.30 (EtOAc/Hex, 1:4) respectively. 1H NMR
(500 MHz, CDCl3): δ (ppm) = 1.27 (t, J = 7.4 Hz, 3 H, OCH2CH3),
1.78–1.72 (m, 4 H, NCH2CH2CH2), 1.91 (t, J = 2.5 Hz, 1 H,
CϵCH), 2.58 (t, J = 6.2 Hz, 2 H, CH2CH2C=C), 3.12 (d, J =
2.4 Hz, 2 H, CH2CϵCH), 3.31 (m, 2 H, NCH2), 4.13 (q, J =
[1] a) T. L. Gilchrist, Heterocyclic Chemistry, Addison Wesley
Longman Ltd., UK, 1997, 3rd Edition, pp. 193–207; b) R. A.
Jones, Pyrroles and their Benzo Derivatives: (ii) Reactivity, in:
Comprehensive Heterocyclic Chemistry, (Eds.: A. R. Katritsky,
C. W. Rees), Pergamon Press: New York, 1984, vol. 4, pp. 201–
312; c) R. J. Sundberg, Pyrroles and their Benzo Derivatives:
(i) Synthesis and Applications, ibid, pp. 313–376.
[2] A. Gossauer, Monopyrrolic Natural Compounds Including
Tetramic Acid Derivatives, in: Progress in the Chemistry of Or-
ganic Natural Products (Eds.: W. Herz, H. Falk, G. W. Kirby),
Springer-Verlag,Vienna, 2003, vol. 86, pp. 2–188.
7.4 Hz, 2 H, OCH2CH3), 9.65 (br., 1 H, NH). 13C NMR (125 MHz, [3] F.-P. Montforts, M. Glasenapp-Breiling, Naturally Occurring
Cyclic Tetrapyrroles, in: Progress in the Chemistry of Organic
Natural Products (Eds.: W. Herz, H. Falk, G. W. Kirby),
Springer-Verlag, Vienna, 2002, vol. 85, pp. 1–55.
[4] a) D. Gravestock, M. C. Dovey, Synthesis 2003, 523–530. b)
See also: D. Gravestock, M. C. Dovey, Synthesis 2003, 1470.
[5] R. S. Robinson, M. C. Dovey, D. Gravestock, Tetrahedron Lett.
2004, 45, 6787–6789.
[6] H. M. Garraffo, P. Jain, T. F. Spande, J. W. Daly, T. H. Jones,
L. J. Smith, V. E. Zottig, J. Nat. Prod. 2001, 64, 421–427.
[7] A. R. Mattocks, Nature 1968, 217, 723–728.
[8] For recent examples see: a) L. Calvo, A. González, M. C.
Sañudo, Synthesis 2002, 2450–2456; b) P. D. Croce, C. La Rosa,
Heterocycles 2001, 55, 1843–1858; c) J. Barluenga, M. Tomás,
V. Kouznetsov, A. Suárez-Sobrino, E. Rubio, J. Org. Chem.
1996, 61, 2185–2190.
[9] B. Rechsteiner, F. Texier-Boullet, J. Hamelin, Tetrahedron Lett.
1993, 34, 5071–5074.
[10] J.-P. Célérier, E. Deloisy, G. Lhommet, P. Maitte, J. Org. Chem.
1979, 44, 3089–3089.
[11] P. H. Lambert, M. Vaultier, R. Carrié, J. Org. Chem. 1985, 50,
5352–5356.
[12] H. M. C. Ferraz, E. O. de Oliveira, M. E. Payret-Arrua, C. A.
Brandt, J. Org. Chem. 1995, 60, 7357–7359.
CDCl3): δ (ppm) = 14.6 (OCH2CH3), 15.6 (CH2CϵCH), 19.8
(NCH2CH2), 22.0 (NCH2CH2CH2), 25.9 (CH2CH2C=C), 41.3
(NCH2), 58.7 (OCH2CH3), 66.3 (CϵCH), 84.8 (CϵCH), 85.3
(NC=C), 161.2 (NC=C), 169.7 (C=O). IR (thin film, CHCl ): ν =
˜
3
3280, 2939, 2857, 2109, 1690, 1637, 1591, 1207 cm–1. MS (EIMS):
m/z (%) = 207 [M+] (44), 178 (100), 162 (23), 134 (60), 132 (33).
HRMS: found m/z = 207.1245 [M+], C12H17NO2 requires 207.1259.
Ethyl (2Z)-2-Azepan-2-ylidenepent-4-ynoate (21c): 11c (0.34 g,
1.9 mmol) was treated with nBuLi (1.6 m solution in hexane,
1.28 mL, 2.04 mmol) and propargyl bromide (80 % w/w solution in
toluene, 0.31 mL, 0.33 g, 2.8 mmol) to afford 21c as a colourless
oil (0.10 g, 0.45 mmol, 24 %) after radial chromatography (EtOAc/
Hex, 1:9); Rf 0.69 (EtOAc/Hex, 1:1). 1H NMR (500 MHz, CDCl3):
δ (ppm) = 1.27 (t, J = 7.1 Hz, 3 H, OCH2CH3), 1.61–1.56 (m, 2 H,
NCH2CH2), 1.73–1.66 (m, 4 H, NCH2CH2CH2CH2), 1.92 (t, J =
2.6 Hz, 1 H, CϵCH), 2.59 (m, 2 H, CH2CH2C=C), 3.21 (d, J =
2.8 Hz, 2 H, CH2CϵCH), 3.32 (m, 2 H, NCH2), 4.13 (q, J =
7.1 Hz, 2 H, OCH2CH3), 9.67 (br., 1 H, NH). 13C NMR (125 MHz,
CDCl3): δ (ppm) = 14.6 (OCH2CH3), 16.6 (CH2CϵCH), 25.3
(NCH2CH2CH2), 29.1 (CH2CH2C=C), 30.0 (NCH2CH2), 30.4
(CH2CH2C=C), 44.0 (NCH2), 59.0 (OCH2CH3), 66.5 (CϵCH), [13] G. Bartoli, C. Cimarelli, R. Dalpozzo, G. Palmieri, Tetrahedron
1995, 51, 8613–8622.
85.6 (CϵCH), 86.2 (NC=C), 167.8 (NC=C), 170.2 (C=O). IR (thin
film, CHCl ): ν = 3291, 2928, 2109, 1643, 1591, 1248, 1196 cm–1.
[14] K. Shiosaki, The Eschenmoser Coupling Reaction, in: Compre-
hensive Organic Synthesis (Eds.: B. M. Trost, I. Fleming), Per-
gamon Press: Oxford, 1991, vol. 2, pp. 865–892.
[15] H. W. Pinnick, Y.-H. Chang, J. Org. Chem. 1978, 43, 4662–
4663.
˜
3
MS (EIMS): m/z (%) = 221 [M+] (42), 192 (100), 148 (84), 146 (41),
120 (32). HRMS: found m/z = 221.1401 [M+], C13H19NO2 requires
221.1416.
[16] For examples see: a) F. G. Fang, M. Prato, G. Kim, D. Danish-
efsky, Tetrahedron Lett. 1989, 30, 3625–3628; b) A. S. Howard,
G. C. Gerrans, J. P. Michael, J. Org. Chem. 1980, 45, 1713–
1715.
Preparation of N-Bridgehead Pyrroles (20). General Two-Step Pro-
cedure: AgNO3 (0.2 mmol) was added to a Pyrex test tube contain-
ing a solution of 21 (1 mmol) in dry CH3CN (1 mL). The test tube
was sealed and subjected to microwave irradiation (700 W, low) for
[17] a) J. P. Michael, A. S. Parsons, Tetrahedron 1996, 52, 2199–
2216; b) Z. Mkhize, M.Sc. Dissertation, University of Natal
(Pmb), 2002.
60 seconds (30, 30). The organic layer was washed with NaI(aq)
,
dried (MgSO4), and concentrated in vacuo. The crude material was
filtered (MeOH) through a short plug of silica gel to afford 20.
[18] R. S. Varma, D. Kumar, Org. Lett. 1999, 1, 697–700.
510
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 505–511