T. Yamanoi et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1009–1013
1013
Gonzalez, F.; Vargas-Berenguel, A. J. Org. Chem. 1999, 64,
522–531; (g) Roy, R.; Hernandez-Mateo, F.; Santoyo-
Gonzalez, F. J. Org. Chem. 2000, 65, 8743–8746; (h)
Shinoda, T.; Maeda, A.; Kagatani, S.; Konno, Y.; Sonobe,
T.; Fukui, M.; Hashimoto, H.; Hara, K.; Fujuta, K. Int. J.
Pharm. 1998, 167, 147–154; (i) Shinoda, T.; Kagatani, S.;
Maeda, A.; Konno, Y.; Hashimoto, H.; Hara, K.; Fujuta,
K.; Sonobe, T. Drug Dev. Ind. Pharm. 1999, 25, 1185–1192;
(j) Andre, S.; Kaltner, H.; Furuike, T.; Nishimura, S.-I.;
Gabius, H.-J. Bioconjugate Chem. 2004, 15, 87–98; (k)
Yasuda, N.; Aoki, N.; Abe, H.; Hattori, K. Chem. Lett.
2000, 706; (l) Ortega-Caballero, F.; Gimenez-Martinez, J.
J.; Garcia-Fuentes, L.; Ortiz-Salmeron, E.; Santoyo-Gonz-
alez, F.; Vargas-Berenguel, A. J. Org. Chem. 2001, 66, 7786;
(m) Ichikawa, M.; Woods, A. S.; Mo, H.; Goldstein, I. J.;
Ichikawa, Y. Tetrahedron: Asymmetry 2000, 11, 289–392;
(n) Mallet, C. O.; Defaye, J.; Fernandez, J. M. G. Chem.
Eur. J. 2002, 8, 1982–1990; (o) Baussanne, I.; Benito, J. M.;
Mallet, C. O.; Fernandez, J. M. G. ChemBioChem 2002, 2,
777–783; (p) Furuike, T.; Sukegawa, T.; Nishimura, S.-I.
Macromolecules 2000, 49, E933; (q) Kitahata, S.; Tanim-
oto, T.; Okada, Y.; Ikuta, A.; Tanaka, K.; Murakami, H.;
Nakano, H.; Koizumi, K. Biosci. Biotechnol. Biochem.
2000, 64, 2406–2411, The references of their enzymatic
glycosylation study using CDs were cited therein.
the hen egg yolk glycopeptide, H-Lys-Val-Ala-Asn-
[(NeuAc-Gal-GlcNAc-Man)2-Man-GlcNAc2]-Lys-Thr-OH
(SGP), as the oligosaccharide donor. The transglycosyl-
ation reaction was carried out using 0.2 lmol of the oli-
gosaccharide donor (SGP), 0.1 lmol of the glycosyl
acceptors (1, 9 and 14), and 1.48 mU of recombinant
Endo-M according to the reported procedure.7 First,
arbutin 1 was used as the glycosyl acceptor in order to
ascertain its reactivity in the Endo-M transglycosyl-
ation. After incubation for 2h at 37 ꢁC, HPLC analysis
of the reaction mixture indicated that the transglycosyl-
ation reaction proceeded with the good yield of 56%. In
general, after the yields of the Endo-M transglycosyla-
tion reached the maximum, the transglycosylation
product was gradually degraded by the hydrolytic activ-
ity of Endo-M. In the case of 1 used as the glycosyl
acceptor, the degradation of the transglycosylation
product of 16 was hardly observed even after 5 h. When
9 and 14 were used as the glycosyl acceptors, the corre-
sponding sialo complex-type oligosaccharide-branched
CDs 17 and 18 were similarly obtained in the high yields
of 67% and 65%, respectively.8 Both yields using 9 and
14 were slightly higher than that of 1. The CD cavities
in these glycosyl acceptors might influence the transgly-
cosylation activity of the enzyme. Thus we could
successfully develop an efficient Endo-M transglycosyl-
ation system to produce oligosaccharide-branched CDs
(Table 2, Scheme 3).
2. (a) Mizuno, M.; Haneda, K.; Iguchi, R.; Muramoto, I.;
Kawakami, T.; Aimoto, S.; Yamamoto, K.; Inazu, T. J.
Am. Chem. Soc. 1999, 121, 284–290; (b) Haneda, K.; Inazu,
T.; Mizuno, M.; Iguchi, R.; Yamamoto, K.; Kumagai, H.;
Aimoto, S.; Suzuki, H.; Noda, T. Bioorg. Med. Chem. Lett.
1998, 8, 1303–1306; (c) Haneda, K.; Inazu, T.; Mizuno, M.;
Iguchi, R.; Tanabe, H.; Fujimori, K.; Yamamoto, K.;
Kumagai, H.; Tsumori, K.; Munekata, E. Biochim. Bio-
phys. Acta 2001, 1526, 242–248; (d) Haneda, K.; Inazu, T.;
Mizuno, M.; Yamamoto, K.; Fujimori, K.; Kumagai, H..
In Peptide Chemistry 1996; Kitada, C., Ed.; Protein
Research Foundation: Osaka, Japan, 1997 pp 13–16.
3. Matsuda, K.; Inazu, T.; Haneda, K.; Mizuno, M.; Yama-
noi, T.; Hattori, K.; Yamamoto, K.; Kumagai, H. Bioorg.
Med. Chem. Lett. 1997, 7, 2353–2356.
4. Our recent study showed that recombinant Endo-M had a
sufficient transglycosylation activity for transferring a
bisecting hybrid-type oligosaccharide from an ovalbumin
glycopeptide: Osumi, K.; Makino, Y.; Akaike, E.; Yama-
noi, T.; Mizuno, M.; Noguchi, M.; Inazu, T.; Yamamoto,
K.; Fujita, K. Carbohydr. Res. 2004, 339, 2633–2635.
5. Arbutin was purchased from Tokyo Kasei Kogyo Co., Ltd.
6. Wang, W.; Pearce, A. J.; Zhang, Y.; Sinay, P. Tetrahedron:
Asymmetry 2001, 12, 517–523.
In summary, we could synthesize the mono-glucose-
branched CDs, which had an appropriate spacer be-
tween the b-cyclodextrin and a glucose moiety, from
b-CD and arbutin. The obtained mono-glucose-
branched cyclodextrins indicated significantly high asso-
ciation constants for doxorubicin in the range of 105–
106 MÀ1. In addition, they worked as highly reactive gly-
cosyl acceptors for the transglycosylation reaction by
Endo-M to produce sialo-complex type oligosaccha-
ride-branched CDs in the high yields of 65–67%. The
arbutin derivatives can be widely used as the useful tags
of various substrates for the Endo-M transglycosyl-
ation. Their introduction into CDs through an appro-
priate spacer can also enhance the CDÕs inclusion
ability for drugs having an aromatic ring like DXR.
These findings will contribute to the development of
drug carriers for targeting drug-delivery systems.
7. Yamanoi, T.; Tsutsumida, M.; Oda, Y.; Akaike, E.; Osumi,
K.; Yamamoto, K.; Fujita, K. Carbohydr. Res. 2004, 339,
1403–1406.
8. Analyses or isolation of the transglycosylation product
were done using HPLC (Shimadzu LC-10AT chromato-
graph equipped with a SPD-10A ultraviolet spectropho-
References and notes
1. (a) Abe, H.; Kenmoku, A.; Yamaguchi, N.; Hattori, K. J.
Incl. Phenom. Macrocyl. Chem. 2001, 44, 39–47; (b) Ikuta,
A.; Koizumi, K.; Tanimoto, T. J. Carbohydr. Chem. 2000,
19, 13–23; (c) Furuike, T.; Aiba, S.; Nishimura, S.-I.
Tetrahedron 2000, 56, 9909–9915; (d) Kassab, R.; Felix, C.;
Parrot-Lopez, H.; Bonaly, R. Tetrahedron Lett. 1997, 38,
7555–7558; (e) Baussanne, I.; Benito, J. M.; Mellet, C. O.;
Fernandez, J. M. G.; Law, H.; Defaye, J. Chem. Commun.
2000, 1489–1490; (f) Garcia-Lopez, J. J.; Hernandez-
Mateo, F.; Isac-Garcia, J.; Kim, J. M.; Roy, R.; Santoyo-
tometer) on
a
reversed-phase column (4.6 · 250 mm,
Inertsil ODS-3, GL Sciences, Inc.). Elution was carried
out with a linear gradient of acetonitrile (5–35%) containing
0.1% aqueous trifluoromethanesulfonic acid (TFA) in
30 min at the flow rate of 1 mL/min. The reaction products
were monitored by absorptions at 214 nm. MALDI-TOF
MS; 17: Found: m/z [MÀH]À 3450.5: calcd for
C
133H213N5O98[MÀH]À 3447.2; 18: Found: m/z [M+K]+
3484.6: calcd for C132H210N6O98 [M+K]+ 3486.1.