Gallo et al.
Scheme 1. Reported Mechanism for the Reaction of Molecular Oxygen with Ruthenium Porphyrins14
lectivities. A breakthrough in the field is the set of results
achieved in 1985 by Groves and Quinn in the aerobic
epoxidation of olefins catalyzed by [RuVI(TMP)(O)2] [TMP
) tetrakis(2,4,6-trimethylphenyl)porphyrin dianion] at room
temperature and ambient pressure.7 Since then, several high
valent dioxoruthenium(VI) porphyrin complexes have been
isolated and found to be excellent catalysts for hydrocarbon
oxidation.8 Only in one case has a Ru(porphyrin)(O)2
complex been structurally characterized.8c Systematic struc-
tural variation of the porphyrin ligand has proved to be a
useful strategy for achieving electronic and steric tuning of
the catalyst. Nevertheless, the structure-reactivity relation-
ship of oxometalloporphyrin complexes remains less under-
stood,2 and little is known about possible deactivation routes
of the catalyst.9
In the proposed and generally accepted mechanism, [RuVI-
(porphyrin)(O)2] transfers one oxygen atom to the olefinic
substrate and the resulting monooxoruthenium complex,
[RuIV(porphyrin)(O)], disproportionates into the epoxidiz-
ing agent, [RuVI(porphyrin)(O)2], and [RuII(porphyrin)]; the
latter is in turn reoxidized and re-enters the catalytic cycle.7b
The elusive [RuIV(TMP)(O)] has been spectroscopically
observed for the first time during the oxidation reaction of
[RuII(TMP)(CH3CN)2],10 and since then, a few [(L)RuIV-
(porphyrin)(O)] species have been isolated and/or character-
ized (L ) EtOH, THF, or OPPh3).11 Thus, the chemistry of
ruthenium dioxoporphyrin complexes continues to attract
much attention, despite the fact that it has been shown in
recent years that when 2,6-dichloropyridine N-oxide is
employed as the oxidant in place of dioxygen, the catalyti-
cally active species are ruthenium(V) porphyrin oxo com-
plexes, instead of ruthenium(VI) species.12,13 In this con-
text, a distinction must be made between complexes of
sterically hindered porphyrin dianions such as TMP and
those of nonsterically demanding ones such as octaethylpor-
phyrin dianion (OEP) and tetraphenylporphyrin dianion
(TPP). Collman et al.14 proposed a mechanism for the
reaction of molecular oxygen with ruthenium porphyrins,
which is outlined in Scheme 1. After reaction of dioxygen
with a RuII(porphyrin) molecule, the dioxygen adduct so
formed reacts with a second RuII(porphyrin) molecule lead-
ing to a µ-peroxo dimer. Homolytic cleavage of the O-O
bond then leads to the formation of two unstable [RuIV-
(10) Groves, J. T.; Ahn, K.-H. Inorg. Chem. 1987, 26, 3831-3833.
(11) (a) Leung, W.-H.; Che, C.-M. J. Am. Chem. Soc. 1989, 111, 8812-
8818. (b) Groves, J. T.; Roman, J. S. J. Am. Chem. Soc. 1995, 117,
5594-5595. (c) Bailey, A. J.; James, B. R. Chem. Commun. 1996,
2343-2344. (d) Cheng, S. Y. S.; James, B. R. J. Mol. Catal. A: Chem.
1997, 117, 91-102.
(12) Sharma, P. K.; de Visser, S. P.; Ogliaro, F.; Shaik, S. J. Am. Chem.
Soc. 2003, 125, 2291-2300.
(7) (a) Groves, J. T.; Quinn, R. Inorg. Chem. 1984, 23, 3844-3846.
(b) Groves, J. T.; Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790-
5792.
(13) (a) Ohtake, H.; Higushi, T.; Hirobe, M. Tetrahedron Lett. 1992, 33,
2521-2524. (b) Ohtake, H.; Higushi, T.; Hirobe, M. J. Am. Chem.
Soc. 1992, 114, 10660-10662. (c) Ohtake, H.; Higuchi, T.; Hirobe,
M. Heterocycles 1995, 40, 867-903. (d) Higuchi, T.; Hirobe, M.
J. Mol. Catal. A: Chem. 1996, 113, 403-422. (e) Groves, J. T.;
Bonchio, M.; Carofiglio, T.; Shalyaev, K. J. Am. Chem. Soc. 1996,
118, 8961-8962. (f) Gross, Z.; Ini, S.; Kapon, M.; Cohen, S.
Tetrahedron Lett. 1996, 37, 7325-7328. (g) Gross, Z.; Ini, S. J.
Org. Chem. 1997, 62, 5514-5521. (h) Gross, Z.; Ini, S. Inorg. Chem.
1999, 38, 1446-1449. (i) Zhang, R.; Yu, W.-Y.; Wong, K.-Y.;
Che, C.-M. J. Org. Chem. 2001, 66, 8145-8153. (j) Le Maux, P.;
Lukas, M.; Simonneaux, G. J. Mol. Catal. A: Chem. 2003, 206, 95-
103.
(8) Selected examples: (a) Leung, W.-H.; Che, C.-M.; Yeung, C.-H.; Poon,
C.-K. Polyhedron 1993, 12, 2331-2334. (b) Liu, C.-J.; Yu, W.-Y.;
Peng, S.-M.; Mark, T. C. W.; Che, C.-M. J. Chem. Soc., Dalton Trans.
1998, 805-812. (c) Lai, T.-S.; Zhang, R.; Cheung, K.-K.; Kwong,
H.-L.; Che, C.-M. Chem. Commun. 1998, 1583-1584. (d) Liu, C.-J.;
Yu, W.-Y.; Che, C.-M.; Yeung, C.-H. J. Org. Chem. 1999, 64, 7365-
7374. (e) Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem.
Commun. 1999, 409-410. (f) Zhang, R.; Yu, W.-Y.; Sun, H.-Z.; Liu,
W.-S.; Che, C.-M. Chem.sEur. J. 2002, 8, 2495-2507. (g) Tavare`s,
M.; Ramasseul, R.; Marchon, J.-C.; Valle´e-Goyet, D.; Gramain, J.-C.
J. Chem. Res., Synop. 1994, 74.
(9) (a)Scharbert, B.; Zeisberger, E.; Paulus, E. J. Organomet. Chem. 1995,
493, 143-147. (b) Cunningham, I. D.; Danks, T. N.; Hay, J. N.;
Hamerton, I.; Gunathilagan, S.; Janczak, C. J. Mol. Catal. A: Chem.
2002, 185, 25-31.
(14) (a) Collman, J. P.; Barnes, C. E.; Brothers, P. J.; Collins, T. J.; Ozawa,
T.; Gallucci, J. C.; Ibers, J. A. J. Am. Chem. Soc. 1984, 106, 5151-
5163. (b) Collman, J. P.; Brauman, J. I.; Fitgerald, J. P.; Sparanpany,
J. W.; Ibers, J. A. J. Am. Chem. Soc. 1988, 110, 3486-3495.
2040 Inorganic Chemistry, Vol. 44, No. 6, 2005