C. A. Olsen et al. / Tetrahedron Letters 46 (2005) 2041–2044
2043
Tetrahedron 1997, 53, 3457; (h) Davis, R. A.; Carroll, A.
R.; Pierens, G. K.; Quinn, R. J. J. Nat. Prod. 1999, 62,
419; (i) Reddy, M. V. R.; Rao, M. R.; Rhodes, D.;
Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Ven-
kateswarlu, Y.; Faulkner, D. J. J. Med. Chem. 1999, 42,
1901; (j) Ham, J.; Kang, H. Bull. Korean. Chem. Soc. 2002,
23, 163; (k) Krishnaiah, P.; Reddy, V. L. N.; Venkatara-
mana, G.; Ravinder, K.; Srinivasulu, M.; Raju, T. V.;
Ravikumar, K.; Chandrasekar, D.; Ramakrisshana, S.;
Venkateswarlu, Y. J. Nat. Prod. 2004, 67, 1168.
the latter mentioned required Suzuki cross-coupling,
tosylation, and finally intramolecular alkylation, which
proceded less efficiently with an overall yield of 33%.
Mono- and dibromination of 1b to give 4b and 5b,
respectively, proceeded in good yields as described for
4a/5a above. The subsequent Suzuki cross-coupling
reactions with the commercially available 3-hydroxy-4-
methoxyphenyl boronic ester (7) furnished the mono-
and diaryl lamellarin D-type open chain compounds
8b28(78%) and 9b29 (80%), respectively.
´
7. Cironi, P.; Albericio, F.; Alvarez, M. In Progress in
Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds.;
Pergamon: Oxford (UK), 2004; Vol. 16, pp 1–26.
8. (a) Shibashi, F.; Tanabe, S.; Oda, T.; Iwao, M. J. Nat.
Preliminary testing of 8b, 9b, 10a, and 11a in various
tumor cell lines showed cytotoxic effects in the low
micromolar area, 9b being the most potent of the four.
´
Prod. 2002, 65, 500; (b) Facompre, M.; Tardy, C.; Bal-
Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas,
C.; Bailly, C. Cancer Res. 2003, 63, 7392; (c) Tardy, C.;
´
Facompre, M.; Laine, W.; Baldeyrou, B.; Garcıa-Grava-
los, D.; Francesch, A.; Mateo, C.; Pastor, A.; Jimenez, J.
A.; Manzanares, I.; Cuevas, C.; Bailly, C. Bioorg. Med.
Chem. 2004, 12, 1697.
´
´
In summary, efficient preparation of scaffolds suitable
for the synthesis of open chain lamellarin analogues
has been established. A key aspect of these reactions is
the regioselective bromination of the pyrrole scaffold,
which can be modulated to give mono- and dibromo
derivatives, this in turn affords the mono- and the diaryl
lamellarin derivatives. The methodologies presented
herein constitute a concise route to open chain lamella-
rin-type compounds with attractive biological activities.
The positive pharmacological results encourage the
preparation of libraries based on these open structures
for SAR studies. This work is in progress and will be
communicated in due course.
´
´
9. (a) Cironi, P.; Manzanares, I.; Albericio, F.; Alvarez, M.
Org. Lett. 2003, 5, 2959; (b) Marfil, M.; Albericio, F.;
´
Alvarez, M. Tetrahedron 2004, 60, 8659; (c) Cironi, P.;
´
Cuevas, C.; Fernando Albericio, F.; Alvarez, M. Tetrahe-
dron 2004, 60, 8669.
10. Methyl pyrrole-2-carboxylate was obtained from pyrrole
by acylation with trichloroacetyl chloride as described by
Harbuck, J. W.; Rapoport, H. J. Org. Chem. 1972, 37,
3618. The 2-trichloroacetylpyrrole was treated with a
solution of NaOMe in MeOH at 0 ꢁC to furnish the
methyl ester.
11. The p-toluenesulfonate was obtained by reaction of the 2-
(2-bromophenyl)ethanol with tosyl chloride in Et2O with
KOH as base.
Acknowledgements
12. Stronger base such as NaH in THF resulted in elimina-
tion, which led to isolation of 2-bromostyrene as the major
product.
13. Kreipl, A. P.; Reid, C.; Steglich, W. Org. Lett. 2002, 4,
3287.
14. Banwell, M. G.; Flynn, B. L.; Hockless, D. C. R.;
Longmore, R. W.; Rae, A. D. Aust. J. Chem. 1999, 52,
755.
This work was partially supported by CICYT (BQU
2003-00089) and Pharma Mar S. L., which is also grate-
fully acknowledged for performing the preliminary bio-
logical tests. Authors thank Dr. Carmen Cuevas for her
encouragement to perform the present work.
15. 1a was totally characterized with the aid of NOE and
1
References and notes
HMBC experiments. H NMR (CDCl3, 400 MHz) d 7.56
(d, J = 7.4 Hz, 1H, H10); 7.24 (m, 3H, H7, H8, H9); 7.01
(d, J = 4.2 Hz, 1H, H2); 6.53 (d, J = 4.2 Hz, 1H, H1); 4.63
(t, J = 6.6 Hz, 2H, H5); 3.83 (s, 3H, OMe); 3.07 (t,
J = 6.6 Hz, 2H, H6). 13C NMR (CDCl3, 100 MHz) d 162.0
(s, CO); 136.4 (s, C3); 131.9 (s, C10b); 128.6 (s, C10a);
128.6 (d, C10); 128.1 (d, C8); 127.7 (d, C9); 123.9 (d, C7);
122.0 (s, C6a); 118.6 (d, C2); 104.7 (d, C1); 51.3 (q, OMe);
42.4 (t, C5); 29.1 (t, C6).
1. For recent reviews, see: (a) Kijjoa, A.; Sawangwong, P.
Mar. Drugs 2004, 2, 73; (b) Newman, D. J.; Cragg, G. M.
J. Nat. Prod. 2004, 67, 1216.
2. Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254.
3. Yoshida, W. Y.; Lee, K. K.; Carroll, A. R.; Scheuer, P. J.
Helv. Chim. Acta 1992, 75, 1721.
4. (a) Rudi, A.; Goldberg, I.; Stein, Z.; Frolow, F.;
Benayahu, Y.; Schleyer, M.; Kashman, Y. J. Org. Chem.
1994, 59, 999; (b) Rudi, A.; Evan, T.; Aknin, M.;
Kashman, Y. J. Nat. Prod. 2000, 63, 832.
5. Chan, G. W.; Francis, T.; Thureen, D. R.; Offen, P. H.;
Pierce, N. J.; Westley, J. W.; Johnson, R. K.; Faulkner, D.
J. J. Org. Chem. 1993, 58, 2544.
6. (a) Andersen, R. J.; Faulkner, D. J.; Cun-heng, H.; Van
Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1985, 107,
5492; (b) Lindquist, N.; Fenical, W.; Van Duyne, G. D.;
Clardy, J. J. Org. Chem. 1988, 53, 4570; (c) Carroll, A. R.;
Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46, 489; (d)
Urban, S.; Butler, M. S.; Capon, R. J. Aust. J. Chem.
1994, 47, 1919; (e) Urban, S.; Hobbs, L.; Hooper, J. N. A.;
Capon, R. J. Aust. J. Chem. 1995, 48, 1491; (f) Urban, S.;
Capon, R. J. Aust. J. Chem. 1996, 49, 711; (g) Reddy, M.
V. R.; Faulkner, D. J.; Venkateswarlu, Y.; Rao, M. R.
16. (a) Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.;
Munro, M. H. G.; Parkin, S.; Hope, H. Tetrahedron 1994,
50, 3987; (b) Trimurtulu, G.; Faulkner, D. J.; Perry, N. B.;
Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro, M. H.
G.; Jameson, G. B. Tetrahedron 1994, 50, 3993.
17. General procedure: To a solution of 4 (1 equiv) in dry
DMF (25 mL) was added 4-isopropoxy phenyl boronic
acid 6 (1.5 equiv), Pd(PPh3)4 (25%), and 2 M aqueous
Na2CO3 (1.63 mL). The reaction mixture was stirred at
125 ꢁC for 24 h. After this time the solvent was evaporated
and the residue was dissolved in CH2Cl2. The organic
solution was washed with brine and water, dried and
concentrated to give a crude material which was purified
by column chromatography on silica gel.
18. The position of the introduced aryl group as well as the
regioselectivity in the formation of monobromoderivative