Soon Bong Park and Howard Alper*
Centre for Catalysis Research and Innovation, Department of
Chemistry, University of Ottawa, 10 Marie Curie Ottawa, ON, Canada
K1N 6N5. E-mail: howard.alper@uottawa.ca
Notes and references
1 For reviews see: (a) C.-J. Li, Acc. Chem. Res., 2002, 35, 533; (b)
K. Sonogashira, in Handbook of Organopalladium Chemistry for
Organic Synthesis, ed. E. Negishi, John Wiley & Sons, New York,
2002, 493; (c) G. Dyker, Angew. Chem. Int. Ed., 1999, 38, 1698.
2 (a) J. J. Wolff, F. Siegler, R. Matschiner and R. Wortmann, Angew.
Chem. Int. Ed., 2000, 39, 1436; (b) N. Matsumi, K. Naka and Y. Chunjo,
J. Am. Chem. Soc., 1998, 120, 5112.
3 (a) B. Jiang and Y.-G. Si, Angew. Chem. Int. Ed., 2004, 43, 216; (b)
I. Paterson, R. D. Davies and R. Marquez, Angew. Chem. Int. Ed.,
2001, 40, 603; (c) M. Toyota, C. Komori and U. Ihara, J. Org. Chem.,
2000, 65, 7110.
Scheme 1 Tentative mechanism for A3 coupling reaction.
yield, while no reaction occurred in the case of cis-2,6-dimethyl
piperidine. Finally, the A3 coupling reaction proceeded well using
alkyl and aryl-substituted acetylenes (entries 17–19).
On the basis of these results, together with several literature
publications,5,6 it is believed that the A3 coupling reaction proceeds
by terminal alkyne C–H bond activation by copper catalysts
(Scheme 1). The copper acetylide intermediate thus generated
can react with the iminium ion prepared in situ from the aldehyde
and the amine, to form the corresponding propargylamine. The
released Cu(I) species is then able to be recycled. Because [bmim]PF6
is a hydrophobic room temperature ionic liquid, it is possible to
exclude water which is only by-product formed in these reactions.
This new method offers the following competitive advantages:
(i) recyclability of the catalyst without significant loss of catalytic
activity; (ii) use of readily available, cheap copper catalysts without
further purification, or without using other additives; (iii) lower
catalyst loading (2 mol%); (iv) broad substrate applicability; (v)
high yields attained in short reaction times; and (vi) simple and
easy operation.
4 (a) C. Koradin, N. Gommermann, K. Polborn and P. Knochel, Chem.
Eur. J., 2003, 9, 2797; (b) L. C. Akullian, M. L. Snapper and
A. H. Hoveyda, Angew. Chem. Int. Ed., 2003, 42, 4244; (c) C. Fisher and
E. M. Carreira, Org. Lett., 2001, 3, 4319; (d) G. S. Kauffman,
G. D. Harris, R. L. Dorow, B. P. R. Stone, R. L. Parsons, J. Pesti, Jr.,
N. A. Magnus, J. M. Fortunak, P. N. Confalone and W. A. Nugent,
Org. Lett., 2000, 2, 3119; (e) K. B. Aubrecht, M. D. Winemiller and
D. B. Callum, J. Am. Chem. Soc., 2000, 122, 11084.
5 (a) C. Wei and C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584; (b) C. Wei,
Z. Li and C.-J. Li, Org. Lett., 2003, 5, 4475; (c) C.-J. Li and C. Wei,
Chem. Commun., 2002, 268; (d) C. Wei and C.-J. Li, J. Am. Chem. Soc.,
2002, 124, 268; (e) Z. Li, C. Wei, L. Chen, R. S. Varma and C.-J. Li,
Tetrahedron Lett., 2004, 45, 2443.
6 L. Shi, Y.-Q. Tu, M. Wang, F.-M. Zhang and C.-A. Fan, Org. Lett.,
2004, 6, 1001.
7 (a) W. A. Herrmann and C. W. Kohlpaintner, Angew. Chem. Int. Ed.
Engl., 1993, 32, 1524; (b) B. Cornils and W. A. Herrmann, Aqueous-
Phase Organometallic Catalysis, Wiley-VCH, Weinheim, 1998.
8 (a) I. T. Horvath and J. Rabai, Science, 1994, 266; (b) I. T. Horvath,
Acc. Chem. Res., 1998, 31, 641; (c) E. de Wolf, G. van Koten and
B. J. Deelman, Chem. Soc. Rev., 1999, 28, 37; (d) Q. Zhang,
Z. Luo and D. P. Curren, J. Org. Chem., 2000, 65, 8866; (e)
M. Wende and J. A. Gladysz, J. Am. Chem. Soc., 2003, 125, 5861.
9 (a) D. E. Bergbreiter, P. L. Osburn, A. Wilson and E. M. Sink, J. Am.
Chem. Soc., 2000, 122, 9058; (b) D. E. Bergbreiter, Chem. Rev., 2002,
102, 3345; (c) T. Mizugaki, M. Murata, M. Ooe, K. Ebitani and
K. Kaneda, Chem. Commun., 2002, 52.
10 For reviews see: (a) A. R. Sethi, P. Smith, N. Srinivasa and T. Walton,
in Green Industrial Applications of Ionic Liquids, eds. R. D. Rogers,
K. R. Seddon and S. Volkov, Kluwer, Boston, 2002, vol. 92; (b)
J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev., 2002, 102,
3367; (c) R. Sheldon, Chem. Commun., 2001, 2399; (d) P. Wasserscheid
and W. Keim, Angew. Chem. Int. Ed., 2000, 39, 3772.
11 (a) S. B. Park and H. Alper, Org. Lett., 2003, 5, 3209; (b) S. B. Park and
H. Alper, Chem. Commun., 2004, 1306; (c) S. B. Park and H. Alper,
Tetrahedron Lett., 2004, 45, 5515.
12 (a) A. Soheili, J. Albaneze-Walker, J. A. Murry, P. G. Dormer and
D. L. Hughes, Org. Lett., 2003, 5, 4191; (b) K. Onitsuka, S. Yamamoto
and S. Takahashi, Angew. Chem. Int. Ed., 1999, 38, 174; (c) L. G. Bruk
and O. N. Temkin, Inorg. Chim. Acta, 1998, 280, 202; (d) B. M. Trost,
M. T. Sorum, C. Chan, A. E. Harms and G. Ruhter, J. Am. Chem. Soc.,
1997, 119, 698; (e) Q. Liu and D. J. Burton, Tetrahedron Lett., 1997, 38,
4371.
In summary, we have developed an efficient synthesis of
propargylamines through three-component coupling of aldehydes,
amines and alkynes via C–H activation by a copper catalyst in the
ionic liquid, [bmim]PF6. This system can be recycled five times
without any significant loss of catalytic activity.
A representative procedure for the coupling reaction follows: a
mixture of [bmim][PF6] (2 mL) and CuCN (2.0 mg, 0.02 mmol)
was degassed under reduced pressure at 80 uC for 30 min, and then
nitrogen gas was introduced. To the solution was added piperidine
(0.12 mL, 1.5 mmol), benzaldehyde (106 mg, 1.0 mmol) and
phenylacetylene (0.16 mL, 1.2 mmol), and the resulting mixture
was heated at 120 uC for 2 h. The product was extracted from the
reaction mixture by addition of diethyl ether and the recovered
ionic liquid layer was reused without any pretreatment. The
combined organic layer was concentrated and the desired product
was isolated by short-path silica gel column chromatography.
We are indebted to the Natural Sciences and Engineering
Research Council of Canada (NSERC) for support of this
research.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 1315–1317 | 1317