H. Oguri et al. / Tetrahedron Letters 46 (2005)2179–2183
2183
10. Our recent studies indicated a high content (more than
30%) of aromatic amino acids in the complementarity-
determining region of specific antibodies against the
tricyclic polyether fragment of CTX3C, see: Nagumo,
Y.; Oguri, H.; Tsumoto, K.; Shindo, Y.; Hirama, M.;
Tsumuraya, T.; Fujii, I.; Tomioka, Y.; Mizugaki, M.;
Kumagai, I. J. Immunol. Methods 2004, 289, 137.
17. Nicolaou, K. C.; Hwang, C. K.; Marron, B. E.; DeFrees,
S. A.; Couladouros, E. A.; Abe, Y.; Carroll, P. J.; Snyder,
J. P. J. Am. Chem. Soc. 1990, 112, 3040.
18. Unfortunately, diastereomeric coupling products such as
12 could not be detected, presumably due to a retro-aldol
reaction. In situ acetylation was thus conducted to prevent
retro-reaction in the coupling of 9 with 10.
11. (a) Chothia, C.; Levitt, M.; Richardson, D. Proc.
Natl. Acad. Sci. U.S.A. 1977, 74, 4130; (b) Branden, C.;
Tooze, J. Introduction to Protein Structure, 2nd ed.;
Garland Pub.: New York, 2000.
19. SmI2-promoted C-glycosylations using pyridyl sulfones:
´
(a) Krintel, S. L.; Jimenez-Barbero, J.; Skrydstrup, T.
Tetrahedron Lett. 1999, 40, 7565; (b) Miquel, N.; Dois-
neau, G.; Beau, J.-M. Angew. Chem., Int. Ed. 2000, 39,
4111; (c) Mikkelsen, L. M.; Krintel, S. L.; Jimenez-
Barbero, J.; Skrydstrup, T. J. Org. Chem. 2002, 67, 6297;
(d) Mikkelsen, L. M.; Skrydstrup, T. J. Org. Chem. 2003,
68, 2123.
12. Selected examples for non-peptide based a-helix mimetics:
(a) Albert, J. S.; Goodman, M. S.; Hamilton, A. D. J. Am.
Chem. Soc. 1995, 117, 1143; (b) Horwell, D. C.; Howson,
W.; Nolan, W. P.; Ratcliffe, G. S.; Rees, D. C.; Willems,
H. M. G. Tetrahedron 1995, 51, 203; (c) Peczuh, M. W.;
Hamilton, A. D.; Sanchez-Quesada, J.; de Mendoza, J.;
Haack, T.; Giralt, E. J. Am. Chem. Soc. 1997, 119, 9327;
(d) Xuereb, H.; Maletic, M.; Gildersleeve, J.; Pelczer, I.;
Kahne, D. J. Am. Chem. Soc. 2000, 122, 1883; (e) Orner,
B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem. Soc.
2001, 123, 5382; (f) Ernst, J. T.; Kutzki, O.; Debnath, A.
K.; Jiang, S.; Lu, H.; Hamilton, A. D. Angew. Chem., Int.
Ed. 2002, 41, 278; (g) Jacoby, E. Bioorg. Med. Chem. Lett.
2002, 12, 891; (h) Kutzki, O.; Park, H. S.; Ernst, J. T.;
Omer, B. P.; Yin, H.; Hamilton, A. D. J. Am. Chem. Soc.
2002, 124, 11838; (i) Ernst, J. T.; Kutzki, O.; Debnath, A.
K.; Jiang, S.; Lu, H.; Hamilton, A. D. Angew. Chem., Int.
Ed. 2002, 41, 278; For recent reviews, see: (j) Peczuh, M.
W.; Hamilton, A. D. Chem. Rev. 2000, 100, 2479.
13. (a) Ichikawa, S.; Shuto, S.; Matsuda, A. Tetrahedron Lett.
1998, 39, 4525; (b) Ichikawa, S.; Shuto, S.; Matsuda, A. J.
Am. Chem. Soc. 1999, 121, 10270; (c) Kodama, T.; Shuto,
S.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2002, 67, 7706.
14. Selected examples for assembly of tetrahydropyran rings
affording tricyclic ether systems: (a) Nicolaou, K. C.;
Theodorakis, E. A.; Rutjes, F. P. J. T.; Sato, M.; Tiebes,
J.; Xiao, X.-Y.; Hwang, C.-K.; Duggan, M. E.; Yang, Z.
20. Data for 16: 1H NMR (500 MHz, CDCl3) d 1.46–1.58 (m,
1H), 1.49 (dt, 1H, J = 12.0, 9.0 Hz), 1.65–1.76 (m, 2H), 2.09
(s, 3H), 2.11–2.12 (m, 1H), 2.57 (dt, 1H, J = 12.0, 4.0 Hz),
3.04 (t, 1H, J = 9.0Hz), 3.13 (t, 1H, J = 9.0Hz), 3.23 (td,
2H, J = 9.0, 4.5 Hz), 3.30 (td, 1H, J = 11.5, 3.5, Hz), 3.40
(ddd, 1H, J = 9.0, 5.5, 2.0 Hz), 3.49 (td, 1H, J = 9.0,
4.5 Hz), 3.62 (dd, 1H, J = 11.0, 5.5 Hz), 3.80 (dd, 1H,
J = 11.0, 2.0 Hz), 3.95 (ddd, 1H, 11.0, 3.5, 1.0 Hz), 4.44 (d,
1H, J = 11.0Hz), 4.52 (d, 1H, J = 11.0Hz), 4.58 (d, 2H,
J = 11.0Hz), 5.11 (t, 1H, J = 9.0Hz), 7.23–7.34 (m, 10H);
13C NMR (125 MHz, CDCl3) d 21.00, 24.90, 29.06, 35.03,
67.80, 68.93, 71.05, 71.97, 73.05, 73.17, 73.93, 75.94,
79.41, 80.13, 80.92, 127.28, 127.42, 127.57, 127.71,
127.86, 128.10, 128.17, 128.30, 137.71, 138.42, 170.32; IR
(neat) mÅ3030, 2948, 1741, 1454, 1367, 1237, 1099 cmꢀ1
;
MALDI-TOFMS calcd for C28H34O7Na [M+Na]+
26
505.220; found 505.218; ½aꢂD +26.4 (c 1.00, CHCl3).
21. Data for 2: 1H NMR (500 MHz, CDCl3) 1H NMR
(500 MHz, CDCl3) d 1.37–1.48 (m, 1H), 1.46 (dt, 1H,
J = 11.5, 9.5 Hz), 1.51 (dt, 1H, J = 11.5, 9.5 Hz), 1.59–1.70
(m, 2H), 1.97 (s, 3H), 2.01 (s, 3H), 2.01–2.08 (m, 1H), 2.38
(dt, 1H, J = 11.5, 4.5 Hz), 2.51 (dd, 1H, J = 11.5, 4.5 Hz),
2.98 (t, 1H, J = 9.5 Hz), 3.02 (t, 1H, J = 9.5 Hz), 3.03 (t,
1H, J = 9.5 Hz), 3.07 (t, 1H, J = 9.5 Hz), 3.12–3.20(m,
2H), 3.21–3.30(m, 3H), 3.34 (ddd, 1H, J = 9.5, 5.5,
1.5 Hz), 3.44 (td, 1H, J = 9.5, 4.5 Hz), 3.57 (dd, 1H,
J = 11.0, 5.0 Hz), 3.71 (dd, 1H, J = 11.0, 1.5 Hz), 3.89
(m, 1H), 4.38 (d, 1H, J = 11.5 Hz), 4.49 (d, 1H,
J = 12.0Hz), 4.52 (d, 1H, J = 11.5 Hz), 4.52 (d, 1H,
J = 12.0Hz), 5.04 (t, 1H, J = 9.5 Hz), 5.07 (t, 1H,
J = 9.5 Hz), 7.17–7.28 (m, 10H); 13C NMR (125 MHz,
CDCl3) d 20.66, 20.75, 24.98, 29.09, 34.91, 35.03, 67.90,
68.97, 71.22, 71.98, 72.40, 72.72, 73.29, 74.00, 74.31, 74.56,
76.33, 79.23, 79.99, 80.04, 80.08, 81.02, 127.42, 127.56,
127.82, 127.84, 128.29, 128.42, 137.72, 138.42, 169.43,
169.75; MALDI-TOFMS calcd for C36H44O11Na
[M+Na]+ 675.273; found 675.289.
´
J. Am. Chem. Soc. 1995, 117, 10239; (b) Alvarez, E.; Perez,
´
´
R.; Rico, M.; Rodrıguez, R. M.; Martın, J. D. J. Org.
Chem. 1996, 61, 3003; (c) Oishi, T.; Nagumo, Y.; Hirama,
M. Synlett 1997, 980; (d) Sasaki, M.; Fuwa, H.; Inoue, M.;
Tachibana, K. Tetrahedron Lett. 1998, 39, 9027; (e)
Sasaki, M.; Fuwa, H. Tetrahedron 2002, 58, 1889; (f)
Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. Org.
Lett. 2002, 4, 2771; (g) Tsukano, S.; Sasaki, M. J. Am.
Chem. Soc. 2003, 125, 14294; (h) Sasaki, M.; Fuwa, H.
Synlett 2004, 1851, and references cited therein.
15. Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel,
G. A.; van Boom, J. H. Synlett 1997, 1263.
16. Nicolaou, K. C.; Li, J.; Zenke, G. Helv. Chem. Acta 2000,
83, 1977.