1302
J. Uenishi et al. / Tetrahedron: Asymmetry 16 (2005) 1299–1303
14, 1905–1908; (e) Hayakawa, H.; Iida, K.; Miyazawa, M.;
1
trans-2E
Miyashita, M. Chem. Lett. 1999, 601–602; (f) Hartung, J.;
Drees, S.; Greb, M.; Schmidt, P.; Svoboda, I.; Fuess, H.;
Murso, A.; Stalke, D. Eur. J. Org. Chem. 2003, 2388–2408;
(g) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am.
Chem. Soc. 2002, 124, 11102–11113; (h) Fettes, A.;
Carreira, E. M. J. Org. Chem. 2003, 68, 9274–9283; (i)
Aubele, D. L.; Lee, C. A.; Floreancig, P. E. Org. Lett.
2003, 5, 4521–4523; (j) Nakamura, R.; Tanino, K.;
Miyashita, M. Org. Lett. 2003, 5, 3579–3582; (k) Chakra-
borty, T. K.; Reddy, V. R.; Reddy, T. J. Tetrahedron 2003,
59, 8613–8622.
PdCl2
- PdCl(OH)
H
O
H
O
Pd
HO
Pd
Cl
Cl
Cl
Cl
H
Pd
Cl
O
H
- HCl
H
H
O
O
I
III
II
3. Henry, P. The Wacker Oxidation and Related Asymmetric
Syntheses. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E.-i., Ed.; John Wiley and
Sons: New York, 2002; Vol. 2, pp 2119–2139.
Scheme 8.
4. Hosokawa, T.; Murahashi, S. Intramolecular Oxypalla-
dation In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E.-i., Ed.; John Wiley and
Sons: New York, 2002; Vol. 2, pp 2169–2192.
elucidated at this point.15 Further studies are currently
in progress.
5. No 6-endo-trigonal type intramolecular oxypalladation for
chiral allylic alcohol substrate with hydroxy nucleophile
has been reported so far. 6-exo-Trigonal cyclization to
allylic alcohol without a stereogenic center has been
reported very recently by Miyazawa, M.; Hirose, Y.;
Narantsetseg, M.; Yokoyama, H.; Yamaguchi, S.; Hirai,
Y. Tetrahedron Lett. 2004, 45, 2883–2886.
6. (a) Faber, K. Biotransformations in Organic Chemistry;
Springer: Berlin, 1992; (b) Chen, C.-S.; Sih, C. J. Angew.
Chem., Int. Ed. Engl. 1989, 28, 695–707; (c) Klibanov, A.
M. Acc. Chem. Res. 1990, 23, 114–120; (d) Santaniello, E.;
Ferraboschi, P.; Grisenti, P.; Manzocchi, A. Chem. Rev.
1992, 92, 1071–1140.
3. Conclusion
2,6-Disubstituted tetrahydro- and 3,6-dihydro[2H]-
pyrans were synthesized stereospecifically by intra-
molecular PdII-catalyzed cyclization of allylic alcohol
with a hydroxy nucleophile under mild conditions. This
result should be useful not only for the synthesis of
these hydrated pyran rings, but also to give further
mechanistic insights into the intramolecular oxypallada-
tion reaction.
7. Typical experiment. A mixture of diol 1 or 10 (1 mmol)
and PdCl2(MeCN)2 (0.1 mmol) in THF (10 mL) was
stirred at 0 °C for 30 min. The mixture was diluted and
carefully purified by silica gel column chromatography
(10% ether in pentane) to give trans- or cis-2E. trans-2E;
1H NMR (300 MHz, CDCl3): d 1.16 (3H, d, J = 6.4 Hz),
1.19–1.32 (2H, m), 1.59–1.68 (4H, m), 1.71 (3H, dd,
J = 6.1 and 1.3 Hz), 3.91 (1H, dqd, J = 7.5, 6.4, and
2.8 Hz), 4.25–4.29 (1H, m), 5.62–5.66 (2H, m); 13C NMR
(75 MHz, CDCl3): d 17.9, 18.6, 20.4, 29.6, 32.1, 67.0, 71.9,
Acknowledgements
This research was supported (in part) by the 21st COE
Program from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan.
References
1
127.2, 131.4. cis-2E; H NMR (300 MHz, CDCl3): d 1.19
1. (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995,
117, 8126–8131; (b) Tanaka, J.; Higa, T. Tetrahedron Lett.
1996, 37, 5535–5538; (c) Horton, P. A.; Koehn, F. E.;
Longley, R. E.; McConnell, O. J. J. Am. Chem. Soc. 1994,
116, 6015–6016; (d) Schummer, D.; Gerth, K.; Reichen-
bach, H.; Hofle, G. Liebigs Ann. 1995, 685–688; (e)
DꢀAmbrosio, M.; Guerriero, A.; Debitus, C.; Pietra, F.
Helv. Chim. Acta 1996, 79, 51–60; (f) Carmely, S.;
Kashman, Y. Tetrahedron Lett. 1985, 26, 511–514; (g)
Tanaka, J.; Higa, T.; Kobayashi, M.; Kitagawa, I. Chem.
Pharm. Bull. 1990, 38, 2967–2970; (h) Jansen, R.; Wray,
V.; Irschik, H.; Reichenbach, H.; Hofle, G. Tetrahedron
Lett. 1985, 26, 6031–6034; (i) Moore, R. E.; Patterson, G.
M. L.; Mynderse, J. S.; Barchi, J., Jr. Pure Appl. Chem.
1986, 58, 263–271; (j) Ishibashi, M.; Moore, R. E.;
Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem.
1986, 51, 5300–5306; (k) Jefford, C. W.; Bernardinelli, G.;
Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 159–162.
2. (a) Recent syntheses of pyran ring Ghosh, A. K.; Wang,
Y. J. Am. Chem. Soc. 2000, 122, 11027–11028; (b) Anada,
M.; Washio, T.; Shimada, N.; Kitagaki, S.; Nakajima, M.;
Shiro, M.; Hashimoto, S. Angew. Chem., Int. Ed. 2004, 43,
2665–2668; (c) Hansen, E. C.; Lee, D. Tetrahedron Lett.
2004, 45, 7151–7155; (d) Joo, J. M.; Kwak, H. S.; Park, J.
H.; Song, H. Y.; Lee, E. Bioorg. Med. Chem. Lett. 2004,
(3H, d, J = 6.2 Hz), 1.25–1.35 (2H, m), 1.46–1.60 (3H, m),
1.68 (3H, ddd, J = 6.4, 1.5, and 0.7 Hz), 1.78–1.85 (1H,
m), 3.48 (1H, dqd, J = 11.0, 6.2, and 1.6 Hz), 3.77 (1H, br
dd, J = 11.3 and 6.6 Hz), 5.51 (1H, ddq, J = 15.4, 6.6, and
1.5 Hz), 5.69 (1H, dqd, J = 15.4, 6.4, and 0.9 Hz); 13C
NMR (75 MHz, CDCl3): d 17.8, 22.2, 23.5, 31.4, 33.0,
73.7, 78.3, 126.7, 132.7.
8. The synthesis of racemic cis-2E has been reported, see
Semmelhack, M. F.; Kim, C. R.; Dobler, W.; Meier, M.
Tetrahedron Lett. 1989, 30, 4925–4928.
9. The quantitative conversion was observed in an NMR
tube experiment. Since products 2 are volatile liquid, some
technical loss occurs during the work-up and purification
process in the above scale of the reaction.
10. The reaction with a nitrogen nucleophile for piperidine
synthesis has been reported, in which an opposite stereo-
chemical result was described, see Hirai, Y.; Nagatsu, M.
Chem. Lett. 1994, 21–22.
11. Their stereochemistries were determined by NOE exper-
iments with their H NMR.
1
12. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734–
736.
13. Alternatively, a chloride intermediate generated by the
addition of PdII and a chloride anion can be considered,3
this idea could be eliminated because of the low concen-