2402
D. Sawada et al. / Tetrahedron Letters 46 (2005) 2399–2403
A. Helv. Chim. Acta 1991, 74, 2043; (d) Kajimoto, T.; Liu,
CO2Me
MeO2C
K. K.-C.; Pederson, R. L.; Zhong, Z.; Ichikawa, Y.;
Porco, J. A., Jr.; Wong, C.-H. J. Am. Chem. Soc. 1991,
113, 6187; (e) Dondoni, A.; Merino, P.; Perrone, D.
Tetrahedron 1993, 49, 2939; (f) Hudlicky, T.; Rouden, J.;
Luna, H.; Allen, S. J. Am. Chem. Soc. 1994, 116, 5099; (g)
Heightman, T. D.; Ermert, P.; Klein, D.; Vasella, A. Helv.
Chim. Acta 1995, 78, 514; (h) Takahata, H.; Banba, Y.;
Ouchi, H.; Nemoto, H. Org. Lett. 2003, 5, 2527; (i)
Sawada, D.; Takahashi, H.; Ikegami, S. Tetrahedron Lett.
2003, 44, 3085; (j) Takahata, H.; Banba, Y.; Ouchi, H.;
Nemoto, H.; Kato, A.; Adachi, I. J. Org. Chem. 2003, 68,
3603; (k) Heck, M.-P.; Vincent, S. P.; Murray, B. W.;
Bellamy, F.; Wong, C.-H.; Mioskowski, C. J. Am. Chem.
Soc. 2004, 126, 1971, and references cited therein.
N
H
N
H
O
H
H
H
H
H
H
O
H H
NOE
OH
OH
HO
HO
OH
OH
H
H
Figure 1. Proposed structure of 32.
3. (a) Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2,
199; (b) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990,
48, 318; (c) Papandreou, G.; Tong, M. K.; Ganem, B. J.
Am. Chem. Soc. 1993, 115, 11682; (d) Sinnot, M. L. Chem.
Rev. 1990, 90, 1171; (e) Bols, M. Acc. Chem. Res. 1998, 31,
1; (f) Gijsen, H. J. M.; Qiao, L.; Fitz, W.; Wong, C.-H.
Chem. Rev. 1996, 96, 443; (g) Martin, O. R. In Carbohy-
drate Mimics; Concepts and Methods; Chapleur, Y., Ed.;
Wiley-VCH: Weinheim, 1998, p 259; (h) Depezay, J. C. In
Carbohydrate Mimics; Concepts and Methods; Chapleur,
Y., Ed.; Wiley-VCH: Weinheim, 1998, p 307.
Figure 2. The X-ray single-crystal structure of 33. Hydrogen atoms
were omitted.
As mentioned above, the glycosylation of azasugars
indicates high stereoselectivity. To confirm the stereo-
chemistry of the glycosyl bonds, 20 and 30 were further
transformed. The benzyl groups of 20 were removed by
Pd/C and H2 in THF to afford the hexa-hydroxyl com-
pound 32 in quantitative yield, whose 1H NMR was rela-
tively simple.15 Analyzing the NOE of 32, we speculate
its structure as shown in Figure 1.
4. (a) Knapp, S.; Choe, Y. H.; Reilly, E. Tetrahedron Lett.
1993, 34, 4443; (b) Suzuki, K.; Hashimoto, H. Tetrahedron
Lett. 1994, 35, 4119.
5. Aza-C-disaccharide, see: (a) Martin, O. R.; Liu, L.; Yang,
´
F. Tetrahedron Lett. 1996, 37, 1991; (b) Frerot, E.;
Marquis, C.; Vogel, P. Tetrahedron Lett. 1996, 37, 2023;
(c) Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R.
J. Am. Chem. Soc. 1997, 119, 4856.
6. Oligosaccharide analogues based on azasugars, see: Rut-
tens, B.; Van der Eycken, J. Tetrahedron Lett. 2002, 43,
2215.
7. Disaccharides containing an azasugar at the reducing end,
see: (a) Moss, S. F.; Southgate, R. J. Chem. Soc., Perkin
Trans. 1993, 1787; (b) Spohr, U.; Bach, M. Can. J. Chem.
1993, 71, 1943; (c) Takahashi, S.; Kuzuhara, H.; Naka-
jima, M. Tetrahedron 2001, 57, 6915.
8. Granier, T.; Vasella, A. Helv. Chim. Acta 1998, 81, 865.
9. Another example of a glycosidation using lanthanides, see:
Hosono, S.; Kim, W.-S.; Sasai, H.; Shibasaki, M. J. Org.
Chem. 1995, 60, 4.
Compound 30 was also debenzylated (100% yield), and
converted to hexa-4-bromobenzoyl compound 33 (60%
yield). The recrystallization of 33 was successful (from
ethyl acetate and MeOH) and its X-ray crystallographic
analysis indicates the structure of 33 as Figure 2. Thus,
the stereochemistry of the glycoside bonds in the cyclic
compounds was found to be all a-glycosides, and it is
disclosed that the glycosylation of these azasugars af-
fords an a-glycoside selectively.
10. (a) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem.
1995, 60, 717; (b) Macdonald, S. J. F.; Clarke, G. D. E.;
Dowle, M. D.; Harrison, L. A.; Hodgson, S. T.; Inglis, G.
G. A.; Johnson, M. R.; Shah, P.; Upton, R. J.; Walls, S. B.
J. Org. Chem. 1999, 64, 5166; (c) Okitsu, O.; Suzuki, R.;
Kabayashi, S. Synlett 2000, 989; (d) Klitzke, C. F.; Pilli,
R. A. Tetrahedron Lett. 2001, 42, 5605; (e) Okitsu, O.;
Suzuki, R.; Kabayashi, S. J. Org. Chem. 2001, 66, 809; (f)
Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S.
J. Am. Chem. Soc. 2001, 123, 12510.
In summary, we have developed glycosylation of azasu-
gars to obtain azaoligosaccharides. Also, the cyclic
azadisaccharides are successfully synthesized, and their
one-pot syntheses are demonstrated. These azaoligosac-
charides are thought to be precedents to develop various
oligosaccharides, novel biologically active compounds,
and new functional molecules. Study on their applica-
tion as functional molecules is now in progress in our
laboratory.
11. These compounds were prepared through the same steps
as for the synthesis of compound 1 using 6-(4-methoxy-
benzyl)-2,3,4-tri-O-benzyl-D-glucono-1,5-lactone. See also
Ref. 8.
References and notes
12. Suh, Y.-G.; Kim, S.-H.; Jung, J.-K.; Shin, D.-Y. Tetra-
hedron Lett. 2002, 43, 3165.
1. (a) Inouye, S.; Tsuruoka, T.; Ito, T.; Niida, T. Tetrahedron
1968, 23, 2124; (b) Ishida, N.; Kumagai, K.; Niida, T.;
Tsuruoka, T.; Yumato, H. J. Antibiot. 1967, 20, 66; (c)
Murao, S.; Miyata, S. Agric. Biol. Chem. 1980, 44, 219.
2. (a) Bashyal, B. P.; Chow, H.-F.; Fleet, G. W. J. Tetrahe-
dron Lett. 1986, 27, 3205; (b) Fleet, G. W. J.; Namgoong,
S. K.; Barker, C.; Baines, S.; Jacob, G. S.; Winchester, B.
Tetrahedron Lett. 1989, 30, 4429; (c) Ermert, P.; Vasella,
13. The 1H NMR is so complicated that it is difficult to know
the concise structure of this compound. However, it gives
a reasonable HR-Mass spectrum.
14. Because the azasugar itself might be a leaving group in
azaoligosaccharides, the cleavage of glycoside bond of 12
or 13 took place by TMSOTf, and same intermediate as
the reaction in Table 2 was generated in situ.