H.-A. Wagenknecht and C. Wagner
poured into aqueous saturated NaHCO3 (50 mL) and extracted with
CH2Cl2. The organic layer was dried (Na2SO4) and evaporated yielding
the phosphoramidite 8 as a yellow solid (95%), which was used directly
for the oligonucleotide synthesis. ESI-MS: m/z: 941 [M+].
[4] a) G. Hartwich, D. J. Caruana, T. de Lumley-Woodyear, Y. Wu, C. N.
Campbell, A. Heller, J. Am. Chem. Soc. 1999, 121, 10803–10812;
b) E. M. Boon, D. Ceres, T. G. Drummond, M. G. Hill, J. K. Barton,
Nat. Biotechnol. 2000, 18, 1096–1100; c) E. M. Boon, J. E. Salas,
J. K. Barton, Nat. Biotechnol. 2002, 20, 282–286.
[5] e.g. a) C. Mao, W. Sun, Z. Shen, N. C. Seeman, Nature 1999, 397,
144–146; b) H. W. Fink, C. Schçnenberger, Nature 1999, 398, 407–
410; c) D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature
2000, 403, 635–638; d) C. M. Niemeyer, M. Adler, Angew. Chem.
2002, 114, 3933–3937; Angew. Chem. Int. Ed. 2002, 41, 3779–3783.
[6] B. Giese, Annu. Rev. Biochem. 2002, 71, 51–70.
[7] Z. Cai, M. D. Sevilla, Top. Curr. Chem. 2004, 237, 103–128.
[8] Most recently: C. Haas, K. Krꢅling, M. Cichon, N. Rahe, T. Carell,
Angew. Chem. 2004, 116, 1878–1880; Angew. Chem. Int. Ed. 2004,
43, 1842–1844.
[9] Most recently: B. Giese, B. Carl, T. Carl, T. Carell, C. Behrens, U.
Hennecke, O. Schiemann, E. Feresin, Angew. Chem. 2004, 116,
1884–1887; Angew. Chem. Int. Ed. 2004, 43, 1848–1851.
[10] Most recently: T. Ito, S. E. Rokita, Angew. Chem. 2004, 116, 1875–
1878; Angew. Chem. Int. Ed. 2004, 43, 1839–1842.
[11] a) E. Rivera, R. H. Schuler, J. Phys. Chem. 1983, 87, 3966–3971;
b) T. Chen, G. P. Cook, A. T. Koppisch, M. M. Greenberg, J. Am.
Chem. Soc. 2000, 122, 3861–3866.
[12] F. D. Lewis, X. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski, J.
Am. Chem. Soc. 2002, 124, 11280–11281.
[13] N. Amann, E. Pandurski, T. Fiebig, H.-A. Wagenknecht, Chem. Eur.
J. 2002, 8, 4877–4883.
[14] a) R. Huber, T. Fiebig, H.-A. Wagenknecht, Chem. Commun. 2003,
1878–1879; b) M. Raytchev, E. Mayer, N. Amann, H.-A. Wagen-
knecht, T. Fiebig, ChemPhysChem 2004, 5, 706–712.
Preparation and characterisation of the oligonucleotides—general proce-
dure: The oligonucleotides were prepared on a Expedite 8909 DNA syn-
thesiser from Applied Biosystems (ABI) by standard phosphoramidite
protocols with chemicals and CPG (1 mol) from ABI and Glen Research.
After preparation, the trityl-off oligonucleotide was cleaved off the resin
and was deprotected by treatment with concentrated NH4OH at 608C for
10 h. The oligonucleotide was dried and purified by HPLC on a semipre-
parative RP-C18 column (300 ꢂ, Supelco) by using the following condi-
tions: A=NH4OAc buffer (50 mm), pH 6.5; B=MeCN; gradient=0–
15% B over 45 min. The oligonucleotides were lyophilised and quantified
by their absorbance at 260 nm[29] on a Varian Cary 100 spectrometer. Du-
plexes were formed by heating to 808C (10 min), followed by slow cool-
ing.
General procedure for the solid-phase synthesis of the phenothiazine-
modified oligonucleotides 9–15: The syntheses were performed on a
1 mol scale (CPG 1000 ꢂ, Glen Research) by using standard phosphor-
amidite protocols. Quantitative coupling of the building block 8 was ach-
ieved by using the minimal coupling time of 1.6 min. After preparation,
the trityl-off oligonucleotide was cleaved off the resin and was deprotect-
ed by treatment with concentrated NH4OH at RT for 36 h. The oligonu-
cleotide was dried and purified by HPLC on a semipreparative RP-C18
column (300 ꢂ, Supelco) using the following conditions: A=NH4OAc
buffer (50 mm), pH 6.5; B=MeCN; gradient=0–30 B over 45 min. The
oligonucleotides were lyophilised, quantified by their absorbance at
260 nm[29] and using e=53200 (260 nm) for 1. MS (MALDI): m/z calcd
for ss9: 5700 [M+]; found: 5711; m/z calcd for ss10: 5685 [M+]; found:
5704; m/z calcd for ss11 5700 [M+]; found: 5702; m/z calcd for ss12: 5670
[M+]; found: 5675; m/z calcd for ss13 5700 [M+]; found: 5705; m/z calcd
for ss14 5655 [M+]; found: 5663; m/z calcd for ss15: 5346 [M+]; found: 5345.
[15] T. Fiebig, A. Trifonov, H.-A. Wagenknecht, I. Buchvarov, unpub-
lished results.
+
[16] E(PyC /Py)=1.5 V (vs NHE) and E00 =3.25 eV, see: T. Kubota, K.
Kano, T. Konse, Bull. Chem. Soc. Jpn. 1987, 60, 3865–3877.
[17] S. Steenken, J. P. Telo, H. M. Novais, L. P. Candeias, J. Am. Chem.
Soc. 1992, 114, 4701–4709.
Strand cleaving experiments: Duplexes (4mm DNA, 10mm Na-Pi buffer,
250mm NaCl) were prepared by heating equimolar solutions of the single
strands to 808C for 10 min in the dark and subsequent slow cooling. The
measurements were performed in quartz glass cuvettes (1 cm). The fresh-
ly prepared duplexes were irradiated by an Xe lamp (75 W Xe lamp,
Oriel Instruments) and a cut-off filter (Andover Corporation, >305 nm).
Every 5 min aliquots (30 mL) of the sample solution (1000 mL) were
taken. Piperidine (3 mL) was added and the samples were heated to 908C
(30 min), lyophilised, dissolved in water (15 mL) and analysed by HPLC
(RP-C18, Supelco) under the following conditions: A=NH4OAc buffer
(50 mm), pH 6.5; B=MeCN; gradient=0–30% B over 45 min. The ob-
tained peaks were processed to give a ratio between unmodified and
modified ssDNA.
+
[18] E(PtzC /Ptz)=1.0 V (vs NHE), see: D. G. McCafferty, D. A. Friesen,
E. Danielson, C. G. Wall, M. J. Saderholm, B. W. Erickson, T. J.
Meyer, Proc. Natl. Acad. Sci. USA 1996, 93, 8200–8204; and E00
=
3.0 eV, see: D. J. Freed, L. R. Faulkner, J. Am. Chem. Soc. 1972, 94,
4790–4792.
[19] a) M. T. Tierney, M. Sykora, S. I. Khan, M. W. Grinstaff, J. Phys.
Chem. B 2000, 104, 7474–7576; b) M. T. Tierney, M. W. Grinstaff,
Org. Lett. 2000, 2, 3413–3416; c) S. A. N. Hashmi, X. Hu, C. E.
Immoos, S. J. Lee, M. W. Grinstaff, Org. Lett. 2002, 4, 4571–4574.
[20] a) K. Kawai, T. Takada, S. Tojo, T. Majima, J. Am. Chem. Soc. 2003,
125, 6842–6843; b) T. Takada, K. Kawai, X. Cai, A. Sugimoto, M.
Fujitsuka, T. Majima, J. Am. Chem. Soc. 2004, 126, 1125–1129.
[21] See recent review: L. A. Agrofoglio, I. Gillaizeau, Y. Saito, Chem.
Rev. 2003, 103, 1875–1916.
[22] E. Mayer, L. Valis, R. Huber, N. Amann, H.-A. Wagenknecht, Syn-
thesis 2003, 2335–2340.
[23] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft, the
Volkswagen-Stiftung and the Fonds der Chemischen Industrie. We are
grateful to Professor Horst Kessler, Technical University of Munich, for
the generous support and to Professor Michael Przybylski, University of
Konstanz, for measuring the HRMS.
[24] a) S. Ebdrup, J. Chem. Soc. Perkin Trans.
1 1998, 1147–1150;
b) C. S. Krꢅmer, T. J. Zimmermann, M. Sailer, T. J. J. Mꢁller, Synthe-
sis 2002, 1163–1170.
[25] a) S. D. Wetmore, R. J. Boyd, L. A. Eriksson, Chem. Phys. Lett.
2001, 343, 151–158; b) X. Li, M. D. Sevilla, L. Sanche, J. Am. Chem.
Soc. 2003, 125, 8916–8920.
[26] The reduction potential is only 0.06 eV lower than that of T: V. P.
Kadysh, Y. L. Kaminskii, L. N. Rumyantseva, V. L. Efimova, J. P.
Strandish, Khim. Geterotsikl. Soedin. 1992, 10, 1404–1408.
[27] S. Steenken, Free Radical Res. Commun. 1992, 16, 349–379.
[28] Z. Cai, X. Li, M. D. Sevilla, J. Phys. Chem. B 2002, 106, 2755–2762.
[29] J. D. Puglisi, I. Tinoco, Methods Enzymol. 1989, 180, 304–325.
[1] H.-A. Wagenknecht, Angew. Chem. 2003, 115, 2558–2565; Angew.
Chem. Int. Ed. 2003, 42, 2454–2460.
[2] a) P. OꢄNeill, E. M. Frieden, Adv. Radiat. Biol. 1993, 17, 53–120;
b) B. Armitage, Chem. Rev. 1998, 98, 1171–1200; c) C. J. Burrows,
J. G. Muller, Chem. Rev. 1998, 98, 1109–1151; d) D. Wang, D. A.
Kreutzer, J. M. Essigmann, Mutat. Res. 1998, 400, 99–115; e) S. Ka-
wanashi, Y. Hiraku, S. Oikawa, Mutat. Res. 2001, 488, 65–76.
[3] Top. Curr. Chem. 2004, 236 and 237, whole volumes.
Received: October 4, 2004
Published online: January 31, 2005
1876
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 1871 – 1876