C O M M U N I C A T I O N S
Table 1. Yields of Photochemical Myers-Saito (C2-C7)and C2-C6
Cyclization Products (1,4-CHD: 1,4-cyclohexadiene) at 17 ( 2 °C
compound
(conc)
solvent
(irradiation time)
λ
max/nm
(in hexane)
C2
−
C6 products
(yield)
C2 C7
−
products (yield)
1a
(1.78 mM) (6 h)
toluene + 1,4-CHDa 283, 300
1b
toluene + 1,4-CHDa 290, 300 (sh)
3
4
(1.96 mM) (7 h)
(12%)b
(24%)b
1c
toluene + 1,4-CHDa 320
2c (15%) +
(1.36 mM) (6 h)
7 (15%)c
1d
2:1 hexane/1,4-CHD 277, 290 (sh) 2d
(5.28 mM) (14 h)
(32%)d
1d
2:1 hexane/1,4-CHD 277, 290 (sh) 2d
(5.28 mM) (4 h)
(61%)e
2e
1e
toluene + 290 equiv 282, 296
(7.29 mM) of 1, 4-CHD (22 h)
(7%)c
triplet sensitizing unit at the allene terminus and the LFP results
suggest that the cyclization proceeds along the triplet manifold as
predicted by DFT calculations.8 An intermediate with τ ) 33 ( 5
µs was tentatively assigned to a singlet biradical. Further studies
to elucidate the details of the photochemical initiation for enyne-
allenes and other Cope-type16 cyclizations are underway.
a 100-fold amount of 1,4-CHD compared to 1. b Isolated yield based on
1b. c Isolated yield. d Isolated yield based on 1d: 75:25 mixture of 2d and
a geometrical isomer. e Yield based on 1d after 4 h (18% conversion).
In contrast to that of 1b, the photochemical reaction of 1c-d
provided only C2-C6 products. Irradiation of 1c at 300 nm furnished
a 1:1 mixture of 2c and 7. The latter is again a formal Diels-
Alder product that lost a TIPS group.11 Irradiation of 1d under
analogous conditions afforded 2d in 32% yield after isolation as a
mixture of cis-trans isomers. Due to the photolability of 2d, the
reaction was studied at low conversion (18%). Now, 2d was the
sole isolable product in 61% yield. Due to ring strain effects,13 we
had originally expected that photolysis of cyclopentenyne-allene
1e could be directed toward the Myers-Saito pathway, but again
a C2-C6 product (i.e., 2e) was furnished (Table 1).
Acknowledgment. We are very much indebted to the Deutsche
Forschungsgemeinschaft and the Fonds der Chemischen Industrie
for continued support of our research. Also, we thank Prof. Dr. B.
Engels (Wu¨rzburg) for his helpful assistance.
Supporting Information Available: Experimental procedures, 1H,
13C spectra for all compounds, and LFP results. This material is
References
(1) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25-31.
(2) (a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111,
8057-8059. (b) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I.
Tetrahedron Lett. 1989, 30, 4995-4998.
(3) (a) Turro, N. J.; Evenzahav, A.; Nicolaou, K. C. Tetrahedron Lett. 1994,
35, 8089-8092. (b) Turro, N.; Evenzahav, A. J. Am. Chem. Soc. 1998,
120, 1835-1841. (c) Funk, R. L.; Young, E. R. R.; Williams, R. M.;
Flanagan, M. F.; Cecil, T. L. J. Am. Chem. Soc. 1996, 118, 3291-3292.
(d) Kaneko, T.; Takahashi, M.; Hirama, M. Angew. Chem., Int. Ed. 1999,
38, 1267-1268. (e) Choy, N.; Blanco, G.; Wen, J.; Krishan, A.; Russell,
K. C. Org. Lett. 2000, 2, 3761-3764. (f) Clark, A. E.; Davidson, E. R.;
Zaleski, J. M. J. Am. Chem. Soc. 2001, 123, 2650-2657. (g) Chandra,
T.; Kraft, B. J.; Huffman, J. C.; Zaleski, J. M. Inorg. Chem. 2003, 42,
5158-5172. (h) Benites, P. J.; Holmberg, R. C.; Rawat, D. S.; Kraft, B.
J.; Klein, L. J.; Peters, D. G.; Thorp, H. H.; Zaleski, J. M. J. Am. Chem.
Soc. 2003, 125, 6434-6446. (i) Alabugin, I. V.; Manoharan, M. J. Phys.
Chem. A 2003, 107, 3363-3371.
(4) (a) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003,
42, 502-528. (b) Rawat, D. S.; Zaleski, J. M. Synlett 2004, 393-421.
(5) (a) Kagan, J.; Wang, X. D.; Chen, X. S.; Lau, K. Y.; Batac, I. V.; Tuveson,
R. W.; Hudson, J. B. J. Photochem. Photobiol., B. 1993, 21, 135-142.
(b) Schmittel, M.; Viola, G.; Dall’Acqua, F.; Morbach, G. Chem. Commun.
2003, 646-647. (c) Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc.
2002, 124, 9052-9053.
(6) Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M. Photochem. Photobiol. 2001,
74, 656-669.
(7) Schmittel, M.; Rodr´ıguez, D.; Steffen, J.-P. Angew. Chem., Int. Ed. 2000,
39, 2152-2155.
(8) Spo¨ler, C.; Engels, B. Chem.sEur. J. 2003, 9, 4670-4677.
(9) (a) The preparation of 1a-e will be described elsewhere. (b) This is the
onset temperature of the exothermic signal in the DSC measurement.
(10) (a) Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36,
4975-4978. (b) Schmittel, M.; Kiau, S.; Strittmatter, M. Angew. Chem.,
Int. Ed. 1996, 35, 1843-1845. (c) Schmittel, M.; Keller, M.; Kiau, S.;
Strittmatter, M. Chem.sEur. J. 1997, 3, 807-816. (d) Schmittel, M.; Kiau,
S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996, 37, 7691-7694.
(e) Engels, B.; Lennartz, C.; Hanrath, M.; Schmittel, M.; Strittmatter, M.
Angew. Chem., Int. Ed. 1998, 37, 1960-1963.
(11) The fact that desilylation in the highly strained formal Diels-Alder
products was seen under both thermal and photochemical conditions
suggested that it is triggered in the workup process; cf. Chen, Z.; Trudell,
M. L. Synth. Commun. 1994, 24, 3149-3155.
(12) Handbook of Photochemistry, 2nd ed.; Murov, S. L., Carmichael, I., Hug,
G. L., Eds.; Marcel Dekker/CRC Press: New York, 1993.
(13) Schmittel, M.; Steffen, J.-P.; Maywald, M.; Engels, B.; Helten, H.; Musch,
P. J. Chem. Soc., Perkin Trans. 2 2001, 1331-1339.
(14) Fo¨rster, E. W.; Grellmann, K. H. Chem. Phys. Lett. 1972, 14, 536.
(15) For the barrier of C-C rotation in the allyl radical, see: Korth, H.-G.;
Trill, H.; Sustmann, R. J. Am. Chem. Soc. 1981, 103, 4483-4489.
(16) Navarro-Va´zquez, A.; Prall, M.; Schreiner, P. R. Org. Lett. 2004, 6,
2981-2984.
A laser flash photolysis (LFP) study of 1c (excitation at 355
nm) revealed the existence of two transients. The first one (λmax
)
440 and 505 nm) with a decay rate constant k ) (3 ( 1) × 107 s-1
(τ ∼ 30 ns) was quenched by 3O2 at a diffusion-controlled rate. Its
absorption maximum at 505 nm is actually typical for a triplet state
of triphenylamine derivatives.14 Hence, we assigned this transient
to 31c*. The second transient (λmax ) 470 nm) exhibited a lifetime
τ ) 33 ( 5 µs with k ) (3.0 ( 0.4) × 104 s-1. Stern-Volmer
3
3
quenching of the long-lived transient by O2 indicated that 1c* is
a precursor. Since the long-lived transient itself did not react with
3O2, nBu3SnH, and by 1,4-cyclohexadiene, we assigned it to the
singlet biradical. Due to a high barrier (ca. 16 kcal mol-1),15 it
should exist as two noninterconverting rotamers (8 and 9), whose
ratio is reflected in the product ratio 7/2c. After the decay of the
long-lived transient, a residual broad absorption band remained that
coincided largely with that of 2c.
It is interesting to see that the products of the photocyclization
of cyclohexenyne-allenes 1a-d are related to the triplet energies
of the substituents R′. Hence, with a triplet energy of about 59
kcal mol-1, as in 1a, no photocyclization occurred, whereas
cyclization was seen with 1b containing a biphenyl (ET ) 65.0
kcal mol-1),12 remarkably, mostly toward the Myers-Saito pathway.
With even higher triplet energies (ET: triphenylamine, 70 kcal
mol-1; ketone, 80 kcal mol-1 12
) of groups R′, the photocyclization
exclusively furnished C2-C6 products.
To summarize, we have realized the first photochemical Myers-
Saito and C2-C6 cyclizations of enyne-allenes. The presence of a
JA044890K
9
J. AM. CHEM. SOC. VOL. 127, NO. 15, 2005 5325