Communications
Hindsgaul, Bioorg. Med. Chem. 1996, 4, 683; c) U. J. Nilsson,
E. J.-L. Fournier, O. Hindsgaul, Bioorg. Med. Chem. 1998, 6,
1563.
[1] a) A. Varki, Glycobiology 1993, 3, 97; b) A. Kobata, Acc. Chem.
Res. 1993, 26, 319; c) R. A. Dwek, Chem. Rev. 1996, 96, 683;
d) Essentials of Glycobiology (Eds: A. Varki, R. Cummings, J.
Esko, H. Freeze, G. Hart, J. Marth), Cold Spring Harbor,
Plainview, New York, 1999.
[8] a) V. Pozsgay, Org. Lett. 1999, 1, 477; b) V. Pozsgay, Tetrahedron:
Asymmetry 2000, 11, 151.
[9] a) H. Ando, S. Manabe, Y. Nakahara, Y. Ito, J. Am. Chem. Soc.
2001, 123, 3848; b) Y. Ito, S. Manabe, Chem. Eur. J. 2002, 8, 3077.
[10] a) T. Miura, Y. Hirose, M. Ohmae, T. Inazu, Org. Lett. 2001, 3,
3947; b) T. Miura, K. Goto, H. Varagai, H. Matsumoto, Y.
Hirose, M. Ohmae, H. Ishida, A. Satoh, T. Inazu, J. Org. Chem.
2004, 69, 5348.
[2] a) T. W. Rademacher, R. B. Parekh, R. A. Dwek, Annu. Rev.
Biochem. 1988, 57, 785; b) R. S. Rush, P. L. Derby, D. M. Smith,
C. Merry, G. Rogers, M. F. Rhode, V. Katta, Anal. Chem. 1995,
67, 1442.
[3] For recent reviews, see: a) Modern Methods in Carbohydrate
Synthesis (Eds: S. H. Khan, R. A. OꢀNeil), Harwood, Amster-
dam, 1996; b) Preparative Carbohydrate Chemistry (Ed.: S.
Hanessian), Marcel Dekker, New York, 1997; c) Carbohydrates
in Chemistry and Biology (Eds.: B. Ernst, G. W. Hart, P. Sinaꢁ),
Wiley-VCH, Weinheim, 2000; d) Solid Support Oligosaccharide
Synthesis and Combinatorial Libraries (Ed.: P. H. Seeberger),
Wiley-Interscience, New York, 2001; e) G.-J. Boons, Tetrahedron
1996, 52, 1095; f) H. M. I. Osborn, T. Q. Khan, Tetrahedron 1999,
55, 1807; g) F. Schweizer, O. Hindsgaul, Curr. Opin. Chem. Biol.
1999, 3, 291; h) P. M. St. Hilaire, M. Meldal, Angew. Chem. 2000,
112, 1210; Angew. Chem. Int. Ed. 2000, 39, 1162; i) P. H.
Seeberger, W.-C. Haase, Chem. Rev. 2000, 100, 4349; j) K. M.
Koeller, C.-H. Wong, Chem. Rev. 2000, 100, 4465; k) H. Herzner,
T. Reipen, M. Schultz, H. Kunz, Chem. Rev. 2000, 100, 4495; l) P.
Sears, C.-H. Wong, Science 2001, 291, 2344; m) K. C. Nicolaou,
H. J. Mitchell, Angew. Chem. 2001, 113, 1624; Angew. Chem. Int.
Ed. 2001, 40, 1576; n) A. V. Demchenko, Synlett 2003, 1225;
o) P. H. Seeberger, Chem. Commun. 2003, 1115; p) D. Crich,
L. B. L. Lim, Org. React. 2004, 64, 115.
[4] For selected recent papers (2000–2004), see: a) X.-S. Ye, C.-H.
Wong, J. Org. Chem. 2000, 65, 2410; b) K. Egusa, K. Fukase, Y.
Nakai, S. Kusumoto, Synlett 2000, 27; c) F. Burkhart, Z. Zhang, S.
Wacowich-Sgarbi, C.-H. Wong, Angew. Chem. 2001, 113, 1314;
Angew. Chem. Int. Ed. 2001, 40, 1274; d) O. J. Plante, E. R.
Palmacci, P. H. Seeberger, Science 2001, 291, 1523; e) T. Zhu, G.-
J. Boons, Org. Lett. 2001, 3, 4201; f) H. M. Nguyen, J. L. Poole,
D. Y. Gin, Angew. Chem. 2001, 113, 428; Angew. Chem. Int. Ed.
2001, 40, 414; g) S. Yamago, T. Yamada, O. Hara, H. Ito, Y. Mino,
J. Yoshida, Org. Lett. 2001, 3, 3867; h) F. Roussel, M. Takhi, R. R.
Schmidt, J. Org. Chem. 2001, 66, 8540; i) J. D. C. Codꢂe, L. J.
van den Bos, R. E. J. N. Litjens, H. S. Overkleeft, J. H. van -
Boom, G. A. van der Marel, Org. Lett. 2003, 5, 1947; j) T. K.
Ritter, K.-K. T. Mong, H. Liu, T. Nakatani, C.-H. Wong, Angew.
Chem. 2003, 115, 4805; Angew. Chem. Int. Ed. 2003, 42, 4657;
k) D. Majumdar, T. Zhu, G.-J. Boons, Org. Lett. 2003, 5, 3591;
l) K. Routenberg, P. H. Seeberger, Angew. Chem. 2004, 116, 612;
Angew. Chem. Int. Ed. 2004, 43, 602; m) S. Yamago, T. Yamada,
T. Maruyama, J. Yoshida, Angew. Chem. 2004, 116, 2197; Angew.
Chem. Int. Ed. 2004, 43, 2145; n) X. Huang, L. Huang, H. Wang,
X.-S. Ye, Angew. Chem. 2004, 116, 5333; Angew. Chem. Int. Ed.
2004, 43, 5221; o) X. Wu, R. R. Schmidt, J. Org. Chem. 2004, 69,
1853.
[11] D. P. Curran, R. Ferritto, Y. Hua, Tetrahedron Lett. 1998, 39,
4937.
[12] a) J. J. Parlow, R. V. Devraj, M. S. South, Curr. Opin. Chem. Biol.
1999, 3, 320; b) S. J. Shuttleworth, S. M. Allin, R. D. Wilson, D.
Nasturica, Synthesis 2000, 1035; c) L. A. Thompson, Curr. Opin.
Chem. Biol. 2000, 4, 324; d) S. V. Ley, I. R. Baxendale, R. N.
Bream, P. S. Jackson, A. G. Lezach, D. A. Langbottom, M. Nesi,
J. S. Scott, R. I. Storer, S. J. Taylor, J. Chem. Soc. Perkin Trans. 1
2000, 23, 3815; e) A. Kirschning, H. Monenschein, R. Witten-
berg, Angew. Chem. 2001, 113, 670; Angew. Chem. Int. Ed. 2001,
40, 650.
[13] a) A. Kirschning, M. Jesberger, A. Schꢄnberger, Org. Lett. 2001,
3, 3623; b) J. Jaunzems, D. Kashin, A. Schꢄnberger, A. Kirschn-
ing, Eur. J. Org. Chem. 2004, 3435.
[14] R. N. MacCoss, P. E. Brennan, S. V. Ley, Org. Biomol. Chem.
2003, 1, 2029.
[15] a) V. W. Goodlett, Anal. Chem. 1965, 37, 431; b) M. Meyer zur -
Heyde, Fresenius Z. Anal. Chem. 1979, 295, 125; c) G. H. P.
Roos, M. C. Watson, S. Afr. J. Chem. 1991, 44, 95.
[16] S. Masala, M. Taddei, Org. Lett. 1999, 1, 1355.
[17] J. J. Parlow, W. Naing, M. S. South, D. L. Flynn, Tetrahedron Lett.
1997, 38, 7959.
[18] To the best of our knoweledge TAI (2) has not been used so far
in PASP synthetic strategies. However, the use of benzenesul-
fonyl isocyanate as a SER was announced, see: W. Naing, S.
Yang, J. J. Parlow, D. L. Flynn, R. V. Devras in Book of
Abstracts, 216th ACS National Meeting, Boston, August 23 –
27, 1998. We are not aware of any article in follow-up to that
communication.
[19] The sequestering of urethanes 3 and 4 failed with other polymer-
supported bases, namely Ambersep 900 OH 6 and trisamine 7,
whereas the rigidified guanidine-type compound 8 was quite
effective but required a much longer reaction time than the
diazaphosphorine 5.
[20] The DSR sequence shown in Scheme 1 was successfully applied
to a sugar primary amine and, with some limitations, to an
anomeric sugar thiol (see Supporting Information). Work in this
area is in progress.
[21] In earlier PASP glycosidation approaches, Kirschning and Ley
and their co-workers used thiophenyl and selenophenyl glyco-
sides, respectively, as donors. The removal of sulphur- and
selenium-containing byproducts required suitable scavenging
procedures. See: a) J. Jaunzems, G. Sourkouni-Argirusi, M.
Jesberger, A. Kirschning, Tetrahedron Lett. 2003, 44, 637; b) J.
Jaunzems, E. Hofer, M. Jesberger, G. Sourkouni-Argirusi, A.
Kirschning, Angew. Chem. 2003, 115, 1198; Angew. Chem. Int.
Ed. 2003, 42, 1166, and ref. [14].
[22] For a definition of “resin-capture–release” hybrid technique,
see: A. Kirschning, H. Monenschein, R. Wittenberg, Chem. Eur.
J. 2000, 6, 4445.
[23] It is well known that the reduction by NaBH4 of sugars protected
as O-levulinates induces the cleavage of the ester group by
removal of methyl g-butyrolactone.
[5] a) T. Kanemitsu, C.-H. Wong, O. Kanie, J. Am. Chem. Soc. 2002,
124, 3591; b) M. Mogemark, M. Elofsson, J. Kihlberg, J. Org.
Chem. 2003, 68, 7281; c) M. Mogemark, F. Gꢃrdmo, T. Tengel, J.
Kihlberg, M. Elofsson, Org. Biomol. Chem. 2004, 2, 1770.
[6] Among the numerous examples which can be cited, the most
convincing case is the work recently reported by Danishefsky
and co-workers targeted to carbohydrate-based HIV vaccines.
See: a) M. Mandal, V. Y. Dudkin, X. Geng, S. J. Danishefsky,
Angew. Chem. 2004, 116, 2611; Angew. Chem. Int. Ed. 2004, 43,
2557; b) X. Geng, V. Y. Dudkin, M. Mandal, S. J. Danishefsky,
Angew. Chem. 2004, 116, 2616; Angew. Chem. Int. Ed. 2004, 43,
2562.
[7] a) M. M. Palcic, L. D. Heeze, M. Pierce, O. Hindsgaul, Glyco-
conjugate J. 1988, 5, 49; b) Y. Ding, J. Labbe, O. Kanie, O.
1676
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1672 –1676