A. Flahaut et al. / Journal of Organometallic Chemistry 692 (2007) 5754–5762
5761
(l) J. Zong, J.-H. Xie, A.-E. Wang, W. Zhang, Q.-L. Zhou, Synlett
(2006) 1193.
[2] (a) Y. Sato, M. Mori, Org. Lett. 5 (2003) 31;
(b) Y. Sato, T. Yoshino, M. Mori, J. Organomet. Chem. 690 (2005)
5753.
[3] (a) L.G. Bonnet, R.E. Douthwaite, Organometallics 22 (2003)
ture was diluted with Et2O, solid NaCl was added and the
organic layer was separated. The residue was extracted
with Et2O. The combined organic layers were dried over
K2CO3, filtered through a short pad of silicagel and con-
1
centrated. A complete conversion was determined by H
4187;
NMR of the crude by comparison with the internal refer-
ence. The residue was purified by column chromatography
(SiO2, pentane/Et2O;9/1) to afford 114 mg (95%) of the
expected product 13 as a colorless oil.
(b) R. Hodgson, R.E. Douthwaite, J. Organomet. Chem. 690
(2005) 5822;
(c) S.-J. Li, J.-H. Zhong, Y.-G. Wang, Tetrahedron: Asymmetry
17 (2006) 1650;
´
(d) A. Ros, D. Monge, M. Alcarazo, E. Alvarez, J.M.
´
Lassaletta, R. Fernandez, Organometallics 25 (2006) 6039;
4.14. Synthesis of (NHC)Pd(allyl)Cl complex (15)
(e) A. Flahaut, S. Roland, P. Mangeney, Tetrahedron: Asym-
metry 18 (2007) 229;
A mixture of silver complex 6a (100 mg, 0.23 mmol) and
[Pd(g3-C3H5)Cl]2 (42 mg, 0.115 mmol) in degassed CH2Cl2
(5 mL) was stirred for 2 h at 20 ꢀC. The silver salts were
removed by filtration through a short pad of Celite. Evap-
oration of the CH2Cl2 and drying under vacuum affor-
ded quantitatively 92 mg of an off-white solid. M.p. =
179–180 ꢀC. 1H NMR (400 MHz, CDCl3) d = 7.10 (d,
1H, J = 1.8 Hz), 6.97 (s, 1H), 6.94 (s, 1H), 6.91 (d, 1H,
J = 1.8 Hz), 5.03 (m, 1H), 4.11 (dd, 1H, J = 7.4 and
2 Hz), 4.10 (s, 3H), 3.15 (d, 1H, J = 6.6 Hz), 3.03 (d,
1H, J = 13.4 Hz), 2.34 (s, 3H), 2.22 (s, 3H), 2.06 (s, 3H).
13C NMR (100 MHz, CD2Cl2): d = 181.3 (Ccarbene),
139.7, 136.4, 135.7, 135.3, 128.9, 128.6, 122.6, 122.2,
114.5 (CHallyl), 71.1 (CH2), 48.6 (CH2), 38.1 (N–CH3),
20.8 (CH3, Mes), 18.1 (CH3, Mes), 17.3 (CH3, Mes). Anal.
Calc. for C16H21ClN2Pd (Mw = 383.22): C, 50.15; H, 5.52;
N, 7.31. Found: C, 49.91; H, 5.39; N, 7.28%.
(f) F. Visentin, A. Togni, Organometallics 26 (2007) 3746.
[4] (a) S. Roland, M. Audouin, P. Mangeney, Organometallics 23 (2004)
3075;
(b) A. Flahaut, S. Roland, P. Mangeney, J. Organomet. Chem. 691
(2006) 3498.
[5] For Pd-catalyzed allylic alkylation reactions in aqueous or biphasic
conditions, see: (a) T. Hashizume, K. Yonehara, K. Ohe, S. Uemura,
J. Org. Chem. 65 (2000) 5197;
(b) C. Rabeyrin, C. Nguefack, D. Sinou, Tetrahedron Lett. 41 (2000)
7461;
(c) M. Nakoji, T. Kanayama, T. Okino, Y.J. Takemoto, Org. Lett. 3
(2001) 3329;
(d) Y. Uozumi, K. Shibatomi, J. Am. Chem. Soc. 123 (2001) 2919;
(e) G. Chen, Y. Deng, L. Gong, A. Mi, X. Cui, Y. Jiang, M.C.K.
Choi, A.S.C. Chan, Tetrahedron: Asymmetry 12 (2001) 1567;
(f) M. Nakoji, T. Kanayama, T. Okino, Y. Takemoto, J. Org. Chem.
67 (2002) 7418;
(g) K. Manabe, S. Kobayashi, Org. Lett. 5 (2003) 3241;
(h) H. Kinoshita, H. Shinokubo, K. Oshima, Org. Lett. 6 (2004)
4085;
(i) Y. Nakai, Y. Uozumi, Org. Lett. 7 (2005) 291;
(j) D. Madec, G. Prestat, E. Martini, P. Fristrup, G. Poli, P.-O.
Norrby, Org. Lett. 7 (2005) 995.
Acknowledgments
[6] H.M. Wang, I.J.B. Lin, Organometallics 17 (1998) 972.
CNRS and UPMC are acknowledged for the financial
support. A. Flahaut thanks Clariant France for a grant.
We thank E. Caytan for the NMR experiments with
triphenylphosphine.
´
[7] P. De Fremont, N.M. Scott, E.D. Stevens, T. Ramnial, O.C.
Lightbody, C.L.B. Macdonald, J.A.C. Clyburne, C.D. Abernethy,
S.P. Nolan, Organometallics 24 (2005) 6301.
[8] (a) C.P. Newman, G.J. Clarkson, J.P. Rourke, J. Organomet. Chem.
692 (2007) 4962;
(b) J.C. Garrison, W.J. Youngs, Chem. Rev. 105 (2005) 3978;
(c) I.J.B. Lin, C. Sekhar Vasam, Coord. Chem. Rev. 251 (2007)
642.
References
[9] A possible explanation for these results would be that the increase of
the steric hindrance could decrease the rate of the ionization step
(oxidative addition) and favor side-reactions that lead to inactive
species.
[10] (a) D.R. Jensen, M.S. Sigman, Org. Lett. 5 (2003) 63;
(b) M.S. Viciu, O. Navarro, R.F. Germaneau, R.A. Kelly III, W.
Sommer, N. Marion, E.D. Stevens, L. Cavallo, S.P. Nolan, Organo-
metallics 23 (2004) 1629.
[1] (a) W.A. Herrmann, V.P.W. Bo¨hm, C.W.K. Gsto¨ttmayr, M.
Grosche, C.-P. Reisinger, T. Weskamp, J. Organomet. Chem. 617–
618 (2001) 616;
(b) C. Yang, H.M. Lee, S.P. Nolan, Org. Lett. 3 (2001) 1511;
(c) L.R. Titcomb, S. Caddick, F.G.N. Cloke, D.J. Wilson, D.
McKerrecher, Chem. Commun. (2001) 1388;
(d) C.W.K. Gsto¨ttmayr, V.P.W. Bo¨hm, E. Herdtweck, M. Grosche,
W.A. Herrmann, Angew. Chem. Int. Ed. 41 (2002) 1363;
[11] In the procedure used for the Tsuji-Trost reactions, the silver salts are
not removed from the reaction media. When one equivalent of PPh3 is
added to the in situ formed complex 15, the precipitate of AgI
immediately disappears then rapidly reappears after 5 min stirring at
20 ꢀC. It seems that a soluble PPh3–AgI complex is formed first
followed by the transfer of PPh3 from silver to palladium with again
precipitation of AgI. Since the same results have been obtained using
isolated (NHC)Pd(g3-C3H5)Cl complexes or complexes generated
in situ from silver complexes and [Pd(g3-C3H5)Cl]2, it is likely that the
same palladium species are formed in the presence or in the absence of
silver salts.
(e) A. Furstner, G. Seidel, D. Kremzov, C.W. Lehmann, Organome-
¨
tallics 22 (2003) 907;
(f) N. Tsoureas, A.A. Danopoulos, A.A.D. Tulloch, M.E. Light,
Organometallics 22 (2003) 4750;
(g) J. Pytkowicz, S. Roland, P. Mangeney, G. Meyer, A. Jutand, J.
Organomet. Chem. 678 (2003) 166;
(h) H.M. Lee, J.Y. Zeng, C.-H. Hu, M.-T. Lee, Inorg. Chem. 43
(2004) 6822;
(i) A.-E. Wang, J.-H. Xie, L.-X. Wang, Q.-L. Zhou, Tetrahedron 61
(2005) 259;
(j) H. Turkmen, B. C¸ etinkaya, J. Organomet. Chem. 691 (2006) 3749;
¨
[12] H.V. Huynh, Y. Han, J.H.H. Ho, G.K. Tan, Organometallics 25
(2006) 3267.
(k) F.E. Hahn, M.C. Jahnke, T. Pape, Organometallics 25 (2006)
5927;