A. Sharon et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3356–3360
Table 3. In vitro PPAR-c transactivation assay19 for some synthesized
compounds of prototype I
3359
References and notes
1. (a) King, H.; Aubert, R.; Herman, W. Diabetes Care 1998,
21, 1413–1431; (b) Zimmet, P.; Alberti, K. G. M. M.;
Shaw, J. Nature 2001, 414, 782.
Compound
Fold activation of PPAR-ca
10 nM
100 nM
1000 nM
3a
3b
12
7
9
3
3
4
4
3
5
4
3
9
9
22
11
13
3
60
30
44
17
5
2. Ram, V. J. Prog. Drug Res. 2003, 60, 93–132.
3. Lehmann, J. M.; Moore, L. B.; Smith-Oliver, T. A.;
Wilkison, W. O.; Willson, T. M.; Kliewer, S. A. J. Biol.
Chem. 1995, 270, 12953–12956.
4. Willson, T. M.; Cobb, J. E.; Cowan, D. J.; Wiethe, R. W.;
Correa, I. D.; Prakash, S. R.; Beck, K. D.; Moore, L. B.;
Kliewer, S. A.; Lehmann, J. M. J. Med. Chem. 1996, 39,
665–668.
5. Issemann, I.; Green, S. Nature 1990, 247, 645–650.
6. Mangelsdorf, D. J.; Evans, R. M. Cell 1995, 83, 841–850.
7. Nolte, R. T.; Wisely, G. B.; Westin, S.; Cobb, J. E.;
Lambert, M. H.; Kurokawa, R.; Rosenfeld, M. G.;
Willson, T. M.; Glass, C. K.; Milburn, M. V. Nature
1998, 395, 137–143.
3c
5a
5b
5c
4
6
7
5d
5e
5
19
16
7
2
5f
5g
4
6
8
7
5
14
27
176
8
Rosiglitazone
14
28
a Compounds were tested in quadruple at concentrations ranging from
10 to 1000 nM. Each compound was tested in at least two separate
experiments. The activity of a compound is calculated as fold
induction compared to an untreated sample.
8. Ellsworth, E. L.; Lunbney, E.; Tait, B. D. US US5789440,
1998; Chem. Abstr. 1998, 129, 161492j.
9. Prasad, J. V. N.; Pavolovsky, P.; Para, K. S.; Ellsworth, E.
L.; Tummino, P. J.; Nouhan, C.; Ferguson, D. Bioorg.
Med. Chem. Lett. 1996, 6, 1113.
10. Prasad, J. V. N.; Para, K. S.; Lunney, E. E.;
Ortwine, D. E.; Dunbar, J. B., Jr.; Ferguson, D.; Tum-
mino, P. J.; Hupe, D.; Bradley, B. D. J. Am. Chem. Soc.
1994, 116, 6989.
3. Results and discussion
Our objective was to design pyran-based PPAR-c
ligands to identify lead structures through an in silico
approach to evaluate their transactivation response. It
is evident from the first series of designed and synthe-
sized compounds 3a–c that the compounds displayed
(Table 3) significant increases in activation response.
Oxidation of both the methylsulfanyl groups in 3a to
its corresponding sulfoxide 8 reduced the activity pro-
file of the compound. Exchange of methylsulfanyl
group by highly hydrophobic phenylsulfanyl substitu-
ent in 7 drastically reduced the activity. In attempts
to obtain more active compounds, sec-amino groups
were introduced in lieu of SCH3 in the linker. A series
of compounds 5a–g were prepared and evaluated for
their agonistic property but none of them displayed
any significant activity.
11. Murilloa, G.; Saltia, G. I.; Kosmeder, J. W., II; Pezzutob,
J. M.; Mehta, R. G. Eur. J. Cancer 2002, 38, 2446.
12. Hollick, J. J.; Golding, B. T.; Griffin, R. J.; Hardcastle, I.
R.; Leahy, J. J. J.; Martin, R. N. L.; Smith, G. C. M.;
Stockley, M. L. Eur. J. Cancer 2002, 38, S118.
13. New MOE version 2002.03, Chemical Computing Group,
14. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.;
Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem.
1998, 19, 1639–1662.
15. Kumar, A.; Ila, H.; Junjappa, H.; Mhatre, S. Chem.
Commun. 1976, 59B, 592–593.
16. (a) Ram, V. J.; Verma, M.; Hussaini, F. A.; Shoeb, A. J.
Chem. Res. 1991, 9898–9899; (b) Ram, V. J.; Verma, M.;
Hussaini, F. A.; Shoeb, A. Liebigs Ann. Chem. 1991, 1229–
1231; (c) Chauhan, S. M. S.; Junjappa, H. Tetrahedron
1976, 32, 1779–1789.
17. Tominaga, Y.; Ushirogochi, A.; Matsuda, Y.; Kobayashi,
G. Chem. Pharm. Bull. 1984, 32, 3384.
18. Crystal data of 3b: C18H19NO3S2, M = 361.46, mono-
4. Biological activity
clinic, space group P2(1)/n, a = 5.419 (0), b = 22.523
3
(1), c = 14.833 (2) A, V = 1804.9(3) A , T = 293 K, Z = 4,
˚
˚
Of various compounds evaluated in in vitro PPAR-
transactivation assay, only three compounds, 3a–c, dem-
onstrated significant transactivation responses. This
study made it possible to modify the structure of 3a to
obtain more compounds as potent PPAR-activators.
Thus, it was imperative to generate information through
computational analyses including docking and molecu-
lar simulations with iterative synthesis and biological
screening.
Dc = 1.330 g cmꢁ1
,
l(Mo-Ka) = 0.31 mmꢁ1
,
F(000) =
760, yellow rectangular crystal, size 0.42 · 0.22 ·
0.20 mm, 4496 reflections measured, 3187 unique,
Rw = 0.15 for all data, conventional R = 0.05 for 2031
Fo > 4r(Fo) and 0.0922 for all 3187 data, S = 1.004 for all
data and 219 parameters. Unit cell determination and
intensity data collection (2h = 50ꢁ) were performed on a
Bruker P4 diffractometer at 293(2) K. Structure solutions
by direct methods and refinements by full-matrix least-
squares methods on F2. Programs: XSCANS [(Siemens
Analytical X-ray Instruments: Madison, Wisconsin, USA
1996) used for data collection and data processing],
SHELXTL-NT [(Bruker AXS: Madison, Wisconsin,
USA 1997) used for structure determination, refinements
and molecular graphics]. (CCDC No of 3b: 273004).
19. Forman, B. M.; Tontonoz, P.; Chen, J.; Brun, R. P.;
Spieglman, B. M.; Evans, R. M. Cell 1995, 83, 803–812.
20. Spectroscopic data of 4-methylsulfanyl-6-substituted-
phenyl-2-oxo-2H-pyran-3-carbonitrile 3a: yield: 48%;
Acknowledgments
V.J.R. and R.P.S. are thankful to ICMR for financial
support of the project. A.S. thanks CSIR for Senior Re-
search Fellowship. Authors are thankful to SAIF,
CDRI, Lucknow for providing spectroscopic data and
elemental analyses.