5338
H. Zuleta-Prada, L. D. Miranda / Tetrahedron Letters 50 (2009) 5336–5339
sions. We also thank H. Rios, R. Patiño, J. Pérez, L. Velasco, N. Zavala,
O
E. Hernandez, I. Chavez, and A. Peña for technical support.
n-Bu3SnH (1.5 eq)
DLP, (2.0 eq)
N
R1
R2
References and notes
11b, 11c
Toluene,
reflux, 5h
N
1. (a) Cordell, G. A.. Introduction to Alkaloids. In A Biogeneric Approach; Wiley
Interscience: New York, 1981. pp 574–832; (b)The Alkaloids, Chemistry and
Physiology; Manske, R. H. F., Ed.; Academic Press: New York, 1981; Vol. XX.
2. Brown, R. T. The Chemistry of Heterocyclic Compound. In The Monoterpenoid
Indole Alkaloids; Saxton, J. E., Ed.; Vol 25; Wiley: New York, 1983; pp 147–199.
part 4.
5b R1= R2 OCH2O 40%
5c R1= R2 = H 35%
Scheme 4. Spirocyclization of 11b and 11c.
3. Merlini, L.; Mondelli, R.; Nasini, G.; Hesse, M. Tetrahedron 1967, 23, 3129.
4. Peube-Locou, N.; Plat, M. Phytochemistry 1973, 12, 199.
5. Mao, L.; Xin, L.; Dequan, Y. Planta Med. 1984, 459.
6. For representative synthesis to yohimbanes and derivates see: (a) van Tamelen,
E. E.; Shamma, M.; Burgstahler, A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. E. J.
Am. Chem. Soc. 1958, 80, 5006; (b) van Tamelen, E. E.; Shamma, M.; Burgstahler,
A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. E. J. Am. Chem. 1969, 91, 7315–7333;
(c) Stork, G.; Guthikonda, R. N. J. Am. Chem. Soc. 1972, 94, 5109–5110; (d)
Wenkert, E.; Halls, T. D. J.; Kunesch, G.; Orito, K.; Stephens, R. L.; Temple, W. A.;
Yadav, J. S. J. Am. Chem. Soc. 1979, 101, 5370; (e) Naito, T.; Tada, Y.; Nishiguchi,
Y.; Ninomiya, I. Heterocycles 1982, 18, 213; (f) Martin, S. F.; Rüeger, H.;
Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124; (g) Meyers,
A. I.; Miller, D. B.; White, F. H. J. Am. Chem. Soc. 1988, 110, 4778; (h) Cobas, A.;
Guitian, E.; Castedo, L. J. Org. Chem. 1992, 57, 6765; (i) Naito, T.; Kuroda, E.;
Miyata, O.; Ninomiya, I. Chem. Pharm. Bull. 1991, 39, 2216; (j) Aube, J.; Gosh, S.;
Tanol, M. J. Am. Chem. Soc. 1994, 116, 9009; (k) Padwa, A.; Beall, L. S.;
Heidelbaugh, T. M.; Liu, B.; Sheehan, S. M. J. Org. Chem. 2000, 65, 2684; (l)
Tanaka, M.; Toyofuku, E.; Demizu, Y.; Yoshida, O.; Nakazawa, K.; Sakai, K.;
Suemune, H. Tetrahedron 2004, 60, 2271; (m) Chang, M. Y.; Chen, C. Y.; Chung,
W. S.; Tasi, M. R.; Wang, Y. S.; Chang, N. C. Tetrahedron 2005, 61, 585; (n)
Mergott, D. J.; Zuend, S. J.; Jacobsen, E. N. Org. Lett. 2008, 10, 745.
NH
HN
MeO
MeO
MeO
MeO
N
N
O
O
Endo
Exo
N
H
2
N
H
10'
NOE
3
10a'
MeO
MeO
MeO
MeO
H
H
H
H
N
N
5'
O
O
7. (a) Ishibashi, H.; Inomata, M.; Ohba, M.; Ikeda, M. Tetrahedron Lett. 1999, 40,
1149; (b) Ishibashi, H.; Kato, I.; Takeda, Y.; Kogure, M.; Tamura, O. Chem.
Commun. 2000, 1527; (c) Ohba, M.; Kubo, H.; Ishibashi, H. Tetrahedron 2000, 56,
7751; (d) Ishibashi, H.; Ishita, A.; Tamura, O. Tetrahedron Lett. 2002, 43, 473; (e)
Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.; Tanabe, G.;
Ishibashi, H. J. Org. Chem. 2005, 70, 1922; (f) Taniguchi, T.; Iwasaki, K.;
Uchiyama, M.; Tamura, O.; Ishibashi, H. Org. Lett. 2005, 7, 4389; (g) Taniguchi,
T.; Tanabe, G.; Muraoka, O.; Ishibashi, H. Org. Lett. 2008, 10, 197; (h) Taniguchi,
T.; Ishibashi, H. Org. Lett. 2008, 10, 4129.
Unfavored
Favored
Figure 1. Stereoselectivity in the spirocyclization process.
172.9 ppm (C-2) and d 59.9 ppm (C-3), assigned to a C-imine and C-
spiro quaternary carbon, respectively, values confirmed by a dis-
tortionless enhancement by polarization transfer (DEPT) experi-
ment. The heteronuclear single quantum correlation (HSQC)
experiment showed the correlation C-H 172.9–8.26 ppm and
established the occurrence of the C–H imine. The stereochemistry
of 5a was supported by a NOESY experiment which confirmed the
correlation between protons C-2 and one of the C-100protons and
the C-50 proton (Fig. 1). The high diastereoselectivity of the process
can be rationalized on the basis of the endo/exo models in the
cyclization process as depicted in Figure 1. It is likely that there
is a strong steric repulsion between the hydroisoquinoline ring
and the aromatic ring of the indole nucleus in the endo model. In
contrast, these stereoelectronic interactions are alleviated in the
exo model, facilitating the formation of 5a. In a previous study of
related systems, the mixture of the two possible diastereoisomers
was observed. Apparently, the presence of the fused benzene ring
in the piperidine moiety (isoquinoline moiety) is responsible for
the repulsive interactions in the present system.
8. (a) Guerrero, M. A.; Cruz-Almanza, R.; Miranda, L. D. Tetrahedron 2003, 59,
4953; (b) Miranda, L. D.; Zard, S. Z. Org. Lett. 2002, 4, 1135; See also: (c)
Friestad, G. K.; Wu, Y. Org. Lett. 2009, 11, 819; For
a related oxidative
spirocyclization using DLP see: (d) Guindeuil, S.; Zard, S. Z. Chem. Commun.
2006, 665.
9. For reviews in the area of radical-ionic processes: (a) Zard, S. Z. Radical
Reactions in Organic Synthesis; Oxford, 2003. p 193; (b) Godineau, E.; Landais, Y.
Chem. Eur. J. 2009, 15, 3044; (c) Murphy, J. A.. In Radicals in Organic Synthesis;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 1, p 298;
Selected recent publications: (d) Korapala, C. S.; Qin, J.; Friestad, G. K. Org. Lett.
2007, 9, 4243; (e) Bertrand, M. P. Tetrahedron 2005, 61, 4261; (f) Ueda, M.;
Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem., Int. Ed. 2005, 44,
6190; (g) Denes, F.; Cutri, S.; Perez-Luna, A.; Chemla, F. Chem. Eur. J. 2006, 12,
6506; (h) Maruyama, T.; Suga, S.; Yoshida, J. Tetrahedron 2006, 62, 6519; (i)
Maruyama, T.; Mizuno, Y.; Shimizu, I.; Suga, S. J. Am. Chem. Soc. 2007, 129, 1902.
10. Van Tamelen, E. E.; Weber, J.; Schiemenz, G. P.; Baker, W. Bioorg. Chem. 1976, 5,
283.
11. Wenkert, E.; Orito, K.; Simmons, D. P.; Kunesch, N.; Ardisson, J.; Poisson, J.
Tetrahedron 1983, 39, 3719.
12. King, F. D. J. Heterocycl. Chem. 2007, 44, 1459.
13. Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Tetrahedron 2001, 57, 2115.
14. General
procedure.
70,80-dimethoxy-100,10a0-dihydro-20H-spiro[indole-3,10-
pyrrolo[1,2-b]isoquinolin]-30(50H)-one (5a): To
a
deaerated solution of
enamide 11a (0.15 g, 0.35 mmol) and Na2CO3 (0.03 g, 0.35 mmol) in 5 mL of
toluene at 95 °C, a solution of n-Bu3SnH (0.15 g, 0.52 mmol) (0.1 mmol/mL)
and 0.27 g (0.72 mmol) of dilauroyl peroxide in toluene (5 mL), was added
dropwise (syringe pump) over 5 h. The reaction mixture was then cooled and
the solvent was removed under reduced pressure. The crude residue was
stirred with an 8% solution of KF in water (10 mL) over night. Then, saturated
solution of NaHCO3 was added (250 mL) and the resulting mixture was
extracted with CH2Cl2 (3 ꢁ 25 mL). The organic layer was dried over Na2SO4.
The solvent was then removed under reduced pressure and the residue was
purified by flash chromatography on silica gel (Hexanes–EtOAc) to give 5a
(0.049 g, 40% yield) as yellow oil. 1H NMR (500 MHz, CDCl3) d ppm: 8.26 (s,
1H), 7.70 (d, J = 7.50 Hz, 1H), 7.45–7.42 (m, 2H), 7.33 (dd, J = 7.5, 15 Hz, 1H),
6.64 (s, 1H), 6.49 s, 1H), 4.96 (d, J = 17.0 Hz, 1H), 4.41 (d, J = 17.0 Hz, 1H), 4.03
(dd, J = 4.0, 11.5 Hz, 1 H), 3.86 (s, 3H), 3.77 (s, 3H), 2.91–2.75 (m, 3H), 2.51 (dd,
J = 4.0, 15.0, Hz, 1H). 13C NMR (125 MHz, CDCl3) d ppm: 172.9, 171.6, 154.6,
148.4, 148.0, 139.6, 129.1, 127.3, 124.1, 122.9, 121.6, 121.3, 111.6, 109.2, 60.3,
59.9, 56.0, 55.9, 42.9, 36.4, 31.3. IR (film): 3342, 3010, 2925, 2854, 1684, 1516,
1462, 1264, 1107, 753. MS (EI) m/z = 348 (100%). HRMS calcd for C21H20O3N2:
349.1552. Found 349.1542.
Finally, several reaction conditions, such as p-toluenesulfonic
acid or BF3–Et2O in refluxing toluene, or trifluoromethanesulfonic
acid in hot dioxane (100 °C)11 all failed to transform the spirocyclic
system 5a into the corresponding pentacyclic system 6a. Initially,
no reaction was observed and only decomposition of the starting
material occurred after longer reactions times (5 h).
In summary, in the present work, we report a novel, stereose-
lective, tandem 6-endo radical cyclization–oxidation-ionic spiro-
cyclization process, using a n-Bu3SnH/DLP mixture, which has
given access to new spiroindolenines. The organic peroxide acts
as both the initiator and the oxidant.
Acknowledgments
9a,10-Dihydro-5H-spiro[[1,3]dioxolo[4,5-g]pyrrolo[1,2-b]isoquinoline-9,30-indol]-
7(8H)-one (5b) (40% yield) as yellow oil. 1H NMR (500 MHz, CDCl3) d ppm: 8.24
We thank CONACYT (J42673Q, 82643) for generous financial
support and Dr. Joseph M. Muchowski for many helpful discus-