A R T I C L E S
Scheme 1
Arnold et al.
Scheme 2 a
enantioselective synthesis and structure revision of (+)-batzel-
ladine F (7).3 A completely distinct strategy involving a nitrone
1,3-dipolar cycloaddition was showcased by Nagasawa and
co-workers first in their synthesis of (()-batzelladine D (2) and
later in the only report to date of the synthesis of (+)-
batzelladine A (1) employing the same strategy.4 Other
creative approaches to complex fragments of the batzelladines
have included N-acylation,5 N-acyliminium cyclizations,6
biomimetic guanidine-bis(enone) condensations,7 formal aza-
Diels-Alder reactions,8 and stereoselective radical cycliza-
tions.9
a Reagents and conditions: (a) (MeHN)2CNMe2N3, CHCl3, 44% (E);
(b) PPh3, CH2Cl2, 81%; (c) p-MeOC6H4NCO, PhMe, 72%; (d) p-MeOC6H4-
CH2NCO, PhMe, 85 °C, 74%; (e) TBDPSCl, imidazole, DMF, 83%; (f)
Cp2ZrHCl, THF, -20 °C, 68%; (g) (ClCH2)2, 62% (R ) PMP), 98% (R )
PMB).
imines and its application to the nonracemic total syntheses of
batzelladines D11 and A.
Within a considerable number of the batzelladine alkaloids,
namely batzelladines A, D, F, and G, there exists a common
tricyclic tetrahydropyrimidine core (10, Scheme 1) incorporating
multiple stereogenic centers along its periphery. Consideration
of this tetrahydropyrimidine core suggests a potentially expedi-
ent route toward its construction, in which simple retrosynthetic
oxidation state adjustment of 10 would provide the tricyclic
dihydropyrimidine intermediate 11. A direct [4 + 2]-discon-
nection along the highlighted C-C and C-N bonds in 11 would
yield simple precursors in the form of a vinyl carbodiimide 12
and a chiral imine 13. Ideally, the lone chiral center in 13 would
dictate the entire stereochemical course of the synthesis. Reports
on annulations of vinyl carbodiimides with imines in N-
heterocycle syntheses are rare,10 in which only achiral PhCHd
NPh was used as a coupling partner with generally modest
yields. We report herein our establishment of a diastereoselective
[4 + 2]-annulation of vinyl carbodiimides with chiral N-alkyl
Results and Discussion
To assess the feasibility and stereochemical outcome of the
diastereoselective [4 + 2]-annulation of vinyl carbodiimides and
imines, model investigations commenced with the preparation
of electron-deficient vinyl carbodiimides 16 and 17 (Scheme
2). 2-Butynoic acid methyl ester (14) was subjected to 1,4-
conjugate addition with tetramethylguanidinium azide (TMGA)
to afford the â-azido acrylate 15 as a mixture of geometrical
isomers. The E-isomer 15 could be isolated in high purity (44%)
and was thus employed in the initial model experiments for
carbodiimide formation. Treatment of E-1512 with PPh3 led to
conversion to its iminophosphorane derivative (81%), which
allowed for its condensation by aza-Wittig reaction with either
p-methoxyphenyl isocyanate or p-methoxybenzyl isocyanate to
form the carbodiimides 16 (72%) and 17 (74%), respectively.
Notably, both of these vinyl carbodiimides could be purified
by silica gel chromatography. The model chiral imine coupling
partner was derived from (S)-5-(hydroxymethyl)-2-pyrrolidinone
(18), which, after TBDPS protection of the hydroxyl group
(83%), could be directly reduced to the imine 19 with Schwartz’s
reagent (68%).13,14
Exposure of the vinyl carbodiimide 16 or 17 to the imine 19
resulted in successful [4 + 2]-annulation in both cases to provide
exclusively the (S,S)-diastereomer of the bicyclic dihydropyri-
midines 20 and 21 (62% and 98%, respectively). Detailed NMR
analysis of the dihydropyrimidine products confirmed the anti-
stereochemical configuration of the pyrrolidine substructure
within both 20 and 21. The high efficiency and degree of
diastereoselectivity in this annulation process highlight the
potential for its application to the synthesis of batzelladines D
and A, both of which share a common anti-fused tricyclic
guanidine core.
(3) (a) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman, L. E.; Shaka, A.
J. J. Org. Chem. 1999, 64, 1512-1519. (b) Cohen, F.; Overman, L. E.;
Sakata, S. K. L. Org. Lett. 1999, 1, 2169-2172. (c) Cohen, F.; Overman,
L. E. J. Am. Chem. Soc. 2001, 123, 10782-10783. (d) Cohen, F.; Overman,
L. E. J. Am. Chem. Soc. 2006, 128, 2594-2603. (e) Cohen, F.; Overman,
L. E. J. Am. Chem. Soc. 2006, 128, 2604-2608.
(4) (a) Ishiwata, T.; Hino, T.; Koshino, H.; Hashimoto, Y.; Nakata, T.;
Nagasawa, K. Org. Lett. 2002, 4, 2921-2924. (b) Shimokawa, J.; Shirai,
K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem., Int. Ed.
2004, 43, 1559-1562. (c) Shimokawa, J.; Ishiwata, T.; Shirai, K.; Koshino,
H.; Tanatani, A.; Nakata, T.; Hashimoto, Y.; Nagasawa, K. Chem.-Eur.
J. 2005, 11, 6878-6888.
(5) Rao, A. V. R.; Gurjar, M. K.; Vasudevan, J. J. Chem. Soc., Chem. Commun.
1995, 1369-1370.
(6) Louwrier, S.; Ostendorf, M.; Tuynman, A.; Hiemstra, H. Tetrahedron Lett.
1996, 37, 905-908.
(7) (a) Black, G. P.; Murphy, P. J.; Walshe, N. D. A.; Hibbs, D. E.; Hursthouse,
M. B.; Malik, K. M. A. Tetrahedron Lett. 1996, 37, 6943-6946. (b) Black,
G. P.; Murphy, P. J.; Walshe, N. D. A. Tetrahedron 1998, 54, 9481-
9488. (c) Black, G. P.; Murphy, P. J.; Thornhill, A. J.; Walshe, N. D. A.;
Zanetti, C. Tetrahedron 1999, 55, 6547-6554.
(8) (a) Elliott, M. C.; Long, M. S. Tetrahedron Lett. 2002, 43, 9191-9194.
(b) Elliott, M. C.; Long, M. S. Org. Biomol. Chem. 2004, 2, 2003-2011.
(9) (a) Evans, P. A.; Manangan, T. Tetrahedron Lett. 2001, 42, 6637-6640.
(b) Evans, P. A.; Manangan, T. Tetrahedron Lett. 2005, 46, 8811.
(10) (a) Wamhoff, H.; Richardt, G.; Sto¨lben, S. AdV. Heterocycl. Chem. 1995,
64, 159-249. (b) Wamhoff, H.; Schmidt, A. Heterocycles 1993, 35, 1055-
1066. (c) Saito, T.; Ohkubo, T.; Kuboki, H.; Maeda, M.; Tsuda, K.;
Karakasa, T.; Satsumabayashi, S. J. Chem. Soc., Perkin Trans. 1 1998,
3065-3080.
(11) For a preliminary report on the use of this strategy for the synthesis of
batzelladine D, see: Arnold, M. A.; Duro´n, S. G.; Gin, D. Y. J. Am. Chem.
Soc. 2005, 127, 6924-6925.
(12) Palacios, F.; Perez de Heredia, I.; Rubiales, G. J. Org. Chem. 1995, 60,
2384-2390.
(13) Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115-4119.
(14) Woo, K.; Jones, K. Tetrahedron Lett. 1991, 32, 6949-6952.
9
13256 J. AM. CHEM. SOC. VOL. 128, NO. 40, 2006