Y. Okada et al. / Tetrahedron Letters 46 (2005) 3261–3263
3263
a
Table 1. Extraction (%) of alkali metal picrates in CH2Cl2
+
Compd
Li+
Na+
K+
Rb+
Cs+
<1
NH4
5a
5b
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
1.5
1.6
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
3.7
13.0
<1
2.8
3.3
<1
<1
<1
<1
1.6
1.4
<1
5c
8a
8b
8c
4.6
9.7
<1
4.3
10.5
<1
1.5
2.2
<1
13a
13b
13c
2.0
2.1
3.9
4.7
<1
<1
a Extraction conditions: 2.5 · 10À4 M of ionophore in CH2Cl2; 2.5 · 10À5 M of picric acid in 0.01 M of MOH at 22 ꢁC. Ionophore solution (5.0 ml)
was shaken (10 min) with picrate solution (5.0 ml) and % extraction was measured by the absorbance of picrate in CH2Cl2. Experimental error was
2%.
7. Calixarenes 50th Anniversary; Vicens, J., Asfari, Z.,
Harrowfield, J. M., Eds.; Kluwer: Dordrecht, 1994.
8. Bo¨hmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713.
9. Okada, Y.; Ishii, F.; Kasai, Y.; Nishimura, J. Tetrahedron
Lett. 1993, 34, 1971.
calixarenes can form 1:1 complex with the alkali metal
ions. Based on this observation, we determined the
extractability of ionophores 5, 8, and 13 with alkali
metal ions from the aqueous phase to an organic
phase.13–17 The extraction experiments were carried
out with 2.5 · 10À4 M of ionophores in CH2Cl2 and
2.5 · 10À5 M of picric acid in 0.01 M of metal hydroxide
at 22 ꢁC. These results are summarized in Table 1. Gen-
erally speaking, they acted as ionophores, although the
extractability is moderate. Ionophores showed the
extractability for larger alkali metal ions like K+, Rb+,
and Cs+ rather than smaller ones like Li+ and Na+.
The best extractability for alkali metal ions among all
ionophores is exhibited by 8. This result suggests that
the crown ether ring of 8 was preorganized to bind the
metal ions by the rigid calixarene moiety attaching the
cyclobutane ring.
10. Okada, Y.; Kasai, Y.; Nishimura, J. Tetrahedron Lett.
1995, 36, 555.
11. Okada, Y.; Mizutani, M.; Ishii, F.; Nishimura, J. Tetra-
hedron Lett. 1997, 38, 9013.
1
12. Compd: H NMR d (intensity, multiplicity, J in Hz). 5a:
2.38 (2H, m), 2.45 (2H, m), 3.56 (6H, s), 3.60 (6H, m), 3.66
(2H, m), 3.76 (2H, d, 16), 3.94 (4H, m), 4.02 (2H, d, 16),
4.40 (2H, m), 6.66–6.80 (8H, m), 6.92–7.05 (4H, m), 7.16
(2H, m). 5b: 2.40 (2H, m), 2.46 (2H, m), 3.58 (6H, s), 3.62
(10H, m), 3.68 (2H, m), 3.81 (2H, d, 16), 3.87 (2H, m), 3.94
(2H, d, 16), 3.99 (2H, m), 4.41 (2H, m), 6.72–6.84 (10H,
m), 7.02–7.11 (4H, m). 5c: 2.40 (2H, m), 2.48 (2H, m),
3.40–3.80 (14H, m), 3.60 (6H, s), 3.82 (2H, d, 15), 3.82–
4.16 (6H, m), 3.86 (2H, d, 15), 4.42 (2H, m), 6.70–6.90
(10H, m), 7.01–7.16 (4H, m). 8a: 2.36 (2H, m), 2.50 (2H,
m), 3.58 (2H, m), 3.62–3.96 (8H, m), 3.76 (6H, s), 3.84
(4H, s), 3.92 (2H, m), 4.58 (2H, m), 6.58–6.92 (10H, m),
7.03–7.16 (4H, m). 8b: 2.38 (2H, m), 2.48 (2H, m), 3.56–
3.80 (14H, m), 3.72 (6H, s), 3.80–3.90 (2H, m), 3.86 (4H,
s), 4.53 (2H, m), 6.62–6.88 (10H, m), 7.04–7.16 (4H, m).
8c: 2.40 (2H, m), 2.50 (2H, m), 3.58–3.80 (18H, m), 3.82–
3.96 (2H, m), 3.70 (6H, s), 3.86 (4H, s), 4.48 (2H, m), 6.62–
6.90 (10H, m), 7.02–7.16 (4H, m). 13a: 2.34 (1H, m), 2.44
(1H, m), 2.61 (1H, m), 3.14 (1H, m), 3.50–3.92 (12H, m),
3.62 (2H, d, 15), 3.76 (3H, s), 3.96 (3H, s), 4.24 (1H, m),
4.41 (2H, d, 15), 4.64 (1H, m), 5.96–6.54 (4H, m), 6.65–
6.98 (5H, m), 7.03–7.22 (5H, m). 13b: 2.36 (3H, m), 2.52
(1H, m), 3.40–3.68 (10H, m), 3.60 (2H, d, 15), 3.61 (3H, s),
3.70–3.86 (4H, m), 3.80 (3H, s), 4.04 (2H, m), 4.10 (2H, d,
15), 4.24 (1H, m), 4.50 (1H, m), 6.37–6.86 (9H, m), 6.94–
7.34 (5H, m). 13c: 2.42 (2H, m), 2.52 (2H, m), 3.56–3.70
(12H, m), 3.60 (2H, d, 15), 3.62 (3H, s), 3.74–3.86 (6H, m),
3.80 (3H, s), 4.04 (2H, d, 15), 4.10 (2H, m), 4.38 (1H, m),
4.50 (1H, m), 6.54–6.82 (8H, m), 6.84–7.22 (6H, m).
13. Okada, Y.; Mizutani, M.; Ishii, F.; Kasai, Y.; Nishimura,
J. Tetrahedron 2001, 57, 1219.
In conclusion, all regioisomers of new calix[4]arene ana-
logs were synthesized in good yields. They formed a
complex with alkali metal ions and extracted larger
metal picrates rather than small ones. Further investiga-
tion is now in progress and will be reported elsewhere.
Acknowledgements
This work was supported by grants from the Ministry of
Education, Culture, Sports, Science, and Technology,
Japan.
References and notes
1. Okada, Y.; Sugiyama, K.; Wada, Y.; Nishimura, J.
Tetrahedron Lett. 1990, 31, 107.
2. Okada, Y.; Ishii, F.; Kasai, Y.; Nishimura, J. Chem. Lett.
1992, 755.
3. Okada, Y.; Mizutani, M.; Ishii, F.; Nishimura, J. Enan-
tiomer 2002, 7, 93.
4. Okada, Y.; Mabuchi, S.; Kurahayashi, M.; Nishimura, J.
Chem. Lett. 1991, 1345.
14. Okada, Y.; Mizutani, M.; Ishii, F.; Nishimura, J. Synlett
2000, 41.
15. Okada, Y.; Mizutani, M.; Ishii, F.; Nishimura, J. Tetra-
hedron Lett. 1999, 40, 1353.
16. Okada, Y.; Mizutani, M.; Nishimura, J. Tetrahedron Lett.
1998, 39, 8467.
17. Okada, Y.; Mizutani, M.; Ishii, F.; Nishimura, J. Tetra-
hedron Lett. 1998, 39, 8461.
5. Okada, Y.; Hagihara, M.; Mineo, M.; Nishimura, J.
Synlett 1998, 269.
6. Okada, Y.; Yoshida, M.; Nishimura, J. Synlett 2003, 199.