3288 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 9
Tamamura et al.
(5) Feng, Y.; Broder, C. C.; Kennedy, P. E.; Berger, E. A. HIV-1 entry
co-factor: Functional cDNA cloning of a seven-transmembrane,
G protein-coupled receptor. Science 1996, 272, 872-877.
(6) Mu¨ller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan,
M. E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S. N.;
Barrera, J. L.; Mohar, A.; Verastegui, E.; Zlotnik, A. Involvement
of chemokine receptors in breast cancer metastasis. Nature 2001,
410, 50-56.
intensities were evaluated by relative build-up rates of the
cross-peaks. Temperature dependence of the chemical shifts
of all of the amide protons was investigated in 23c-e, 23o,
and 23p. In 23c, the temperature coefficients for all of the NH
protons were large. In 23d, the only temperature coefficient
for the NH of D-Tyr3 was small, but NOE was not observed
between the Nal1 CRH and D-Tyr3 NH. In 23e, 23o, and 23p,
the temperature coefficients for the NH of D-Tyr3 and Arg5
were small, but NOE was not observed between the Nal1 CRH
and D-Tyr3 NH or between the D-Tyr3 CRH and Arg5 NH. Thus,
no hydrogen bond restraints were used in the simulated
annealing calculations of 23c-e, 23o, and 23p.
(7) Koshiba, T.; Hosotani, R.; Miyamoto, Y.; Ida, J.; Tsuji, S.;
Nakamura, S.; Kawaguchi, M.; Kobayashi, H.; Doi, R.; Hori, T.;
Fujii, N.; Imamura, M. Expression of stromal cell-derived factor
1 and CXCR4 ligand receptor system in pancreatic cancer:
a
possible role for tumor progression. Clin. Cancer Res. 2000, 6,
3530-3535.
Calculation of Structures. The structure calculations
were performed on a Silicon Graphics Origin 2000 workstation
with the NMR-refine program within the Insight II/Discover
package using the consistent valence force field (CVFF).55
Pseudoatoms were defined for the methylene protons of Nal1,
D-Tyr3, Arg4, and Arg5 prochiralities of which were not identi-
fied by 1H NMR data. The restraints, in which the Gly2
R-methylene participated, were defined for the separate
protons without definition of the prochiralities. The dihedral
φ angle constraints were calculated based on the Karplus
equation: 3J(HN,HR) ) 6.7cos2(θ - 60) - 1.3cos(θ - 60) + 1.5.56
Lower and upper angle errors were set to 15°. The NOESY
spectrum with a mixing time of 400 ms was used for the
estimation of the distance restraints between protons. The
NOE intensities were classified into three categories (strong,
medium, and weak) based on the number of contour lines in
the cross-peaks to define the upper-limit distance restraints
(2.7, 3.5, and 5.0 Å, respectively). The upper-limit restraints
were increased by 1.0 Å for the involved pseudoatoms. Lower
bounds between nonbonded atoms were set to their van der
Waals radii (1.8 Å). These distance and dihedral angle
restraints were included with force constants of 25-100 kcal/
mol‚Å2 and 25-100 kcal/mol‚rad2, respectively. The 50 initial
structures generated by the NMR refine program randomly
were subjected to the simulated annealing calculations. The
final minimization stage was achieved until the maximum
derivative became less than 0.01 kcal/mol‚Å2 by the steepest
descents and conjugate gradients methods.
(8) Mori, T.; Doi, R.; Koizumi, K.; Toyoda, E.; Tulachan, S. S.; Ito,
D.; Kami, K.; Masui, T.; Fujimoto, K.; Tamamura, H.; Hira-
matsu, K.; Fujii, N.; Imamura, M. CXCR4 antagonist inhibits
stromal cell-derived factor 1-induced migration and invasion of
human pancreatic cancer. Mol. Cancer Ther. 2004, 3, 29-37.
(9) Robledo, M. M.; Bartolome, R. A.; Longo, N.; Miguel Rodriguez-
Frade, J.; Mellado, M.; Longo, I.; van Muijen, G. N. P.; Sanchez-
Mateos, P.; Teixido, J. Expression of functional chemokine
receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol.
Chem. 2001, 276, 45098-45105.
(10) Taichman, R. S.; Cooper, C.; Keller, E. T.; Pienta, K. J.;
Taichman, N. S.; McCauley, L. K. Use of the stromal cell-derived
factor-1/CXCR4 pathway in prostate cancer matastasis to bone.
Cancer Res. 2002, 62, 1832-1837.
(11) Schrader, A. J.; Lechner, O.; Templin, M.; Dittmar, K. E. J.;
Machtens, S.; Mengel, M.; Probst-Kepper, M.; Franzke, A.;
Wollensak, T.; Gatzlaff, P.; Atzpodien, J.; Buer, J.; Lauber, J.
CXCR4/CXCL12 expression and signalling in kidney cancer. Br.
J. Cancer 2002, 86, 1250-1256.
(12) Geminder, H.; Sagi-Assif, O.; Goldberg, L.; Meshel, T.; Rechavi,
G.; Witz, I. P.; Ben-Baruch, A. A possible role for CXCR4 and
its ligand, the CXC chemokine stromal cell-derived factor-1, in
the development of bone marrow metastases in neuroblastoma.
J. Immunol. 2001, 167, 4747-4757.
(13) Bertolini, F.; Dell’Agnola, C.; Mancuso, P.; Rabascio, C.; Burlini,
A.; Monestiroli, S.; Gobbi, A.; Pruneri, G.; Martinelli, G. CXCR4
neutralization, a novel therapeutic approach for non-Hodgkin’s
lymphoma. Cancer Res. 2002, 62, 3106-3112.
(14) Kijima, T.; Maulik, G.; Ma, P. C.; Tibaldi, E. V.; Turner, R. E.;
Rollins, B.; Sattler, M.; Johnson, B. E.; Salgia, R. Regulation of
cellular proliferation, cytoskeletal function, and signal trans-
duction through CXCR4 and c-Kit in small cell lung cancer cells.
Cancer Res. 2002, 62, 6304-6311.
Acknowledgment. This work was supported in part
by a 21st Century COE Program “Knowledge Informa-
tion Infrastructure for Genome Science”, a Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and the
Japan Health Science Foundation. Computation time
was provided by the Supercomputer Laboratory, Insti-
tute for Chemical Research, Kyoto University. S.U. is
grateful for a Research Fellowship from the Japan
Society for the Promotion of Science for Young Scien-
tists.
(15) Scotton, C. J.; Wilson, J. L.; Milliken, D.; Stamp, G.; Balkwill,
F. R. Epithelial cancer cell migration: a role for chemokine
receptors? Cancer Res. 2001, 61, 4961-4965.
(16) Scotton, C. J.; Wilson, J. L.; Scott, K.; Stamp, G.; Wilbanks, G.
D.; Fricker, S.; Bridger, G.; Balkwill, F. R. Multiple actions of
the chemokine CXCL12 on epithelial tumor cells in human
ovarian cancer. Cancer Res. 2002, 62, 5930-5938.
(17) Sanz-Rodriguez, F.; Hidalgo, A.; Teixido, J. Chemokine stromal
cell-derived factor-1R modulates VLA-4 integrin-mediated mul-
tiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1.
Blood 2001, 97, 346-351.
(18) Tsukada, N.; Burger, J. A.; Zvaifler, N. J.; Kipps, T. J. Distinctive
features of “nurselike” cells that differentiate in the context of
chronic lymphocytic leukemia. Blood 2002, 99, 1030-1037.
(19) Juarez, J.; Bradstock, K. F.; Gottlieb, D. J.; Bendall, L. J. Effects
of inhibitors of the chemokine receptor CXCR4 on acute lym-
phoblastic leukemia cells in vitro. Leukemia 2003, 17, 1294-
1300.
(20) Rubin, J. B.; Kung, A. L.; Klein, R. S.; Chan, J. A.; Sun, Y.-P.;
Schmidt, K.; Kieran, M. W.; Luster, A. D.; Segal, R. A. A small-
molecule antagonist of CXCR4 inhibits intracranial growth of
primary brain tumors. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
13513-13518.
(21) Nanki, T.; Hayashida, K.; El-Gabalawy, H. S.; Suson, S.; Shi,
K.; Girschick, H. J.; Yavuz, S.; Lipsky, P. E. Stromal cell-derived
factor-1-CXC chemokine receptor 4 interactions play a central
role in CD4+ T cell accumulation in rheumatoid arthritis
synovium. J. Immunol. 2000, 165, 6590-6598.
(22) Tamamura, H.; Xu, Y.; Hattori, T.; Zhang, X.; Arakaki, R.;
Kanbara, K.; Omagari, A.; Otaka, A.; Ibuka, T.; Yamamoto, N.;
Nakashima, H.; Fujii, N. A low molecular weight inhibitor
against the chemokine receptor CXCR4: a strong anti-HIV
peptide T140. Biochem. Biophys. Res. Commun. 1998, 253, 877-
882.
(23) Tamamura, H.; Hori, A.; Kanzaki, N.; Hiramatsu, K.; Mizumoto,
M.; Nakashima, H.; Yamamoto, N.; Otaka, A.; Fujii, N. T140
analogs as CXCR4 antagonists identified as anti-metastatic
agents in the treatment of breast cancer. FEBS Lett. 2003, 550,
79-83.
Supporting Information Available: Characterization
data of representative synthetic compounds and HPLC charts
of 11a, 11c, 15e, 16e, 15q, 16q, 20a, 20d, 23d, 23j, 23o, and
23p. This material is available free of charge via the Internet
References
(1) Nagasawa, T.; Kikutani, H.; Kishimoto, T. Molecular cloning and
structure of a pre-B-cell growth-stimulating factor. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 2305-2309.
(2) Bleul, C. C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.;
Sodroski, J.; Springer, T. A. The lymphocyte chemoattractant
SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.
Nature 1996, 382, 829-833.
(3) Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.-
L.; Arenzana-Seisdedos, F.; Schwartz, O.; Heard, J.-M.; Clark-
Lewis, I.; Legler, D. F.; Loetscher, M.; Baggiolini, M.; Moser, B.
The CXC chemokine SDF-1 is the ligand for LESTR/fusin and
prevents infection by T-cell-line-adapted HIV-1. Nature 1996,
382, 833-835.
(4) Tashiro, K.; Tada, H.; Heilker, R.; Shirozu, M.; Nakano, T.;
Honjo, T. Signal sequence trap: a cloning strategy for secreted
proteins and type I membrane proteins. Science 1993, 261, 600-
603.