A R T I C L E S
Van Veldhuizen et al.
agents with unprecedented levels of generality (in terms of both
substrate and alkylzincs) and enantioselectivity.6
pure binaphthyl-based amino alcohol, we decided to employ a
readily available optically pure chiral diamine backbone as the
source of chirality. Thus, we surmised that the asymmetric
diamine structure could allow us to employ an achiral biphenyl-
based amino alcohol: diastereoselectivity would be induced
once the transition metal is inserted within the structure of the
bidentate ligand.9,10
As a result of the promising developments mentioned above
in connection with Ru- and Cu-catalyzed transformations, and
because N-heterocyclic carbenes are effective in initiating a
range of organic transformations as ligands7 or catalysts,8 we
set out to design, synthesize, and develop a new generation of
the chiral bidentate NHCs that can be prepared more readily.
Specifically, a significant drawback regarding the general utility
of the first generation ligands (cf., Scheme 1) arises from the
level of efficiency and practicality with which the requisite
optically pure axially chiral amino alcohols are typically
prepared.4
Herein, we describe the synthesis, structure, and utility of a
significantly more easily accessible chiral bidentate NHC and
the utility of the corresponding Ag(I) complex in promoting
Ru-catalyzed asymmetric olefin metathesis and Cu-catalyzed
allylic alkylations. We also demonstrate that metal complexes
derived from the new bidentate NHC often provide higher
reactivity and enantioselectivity in comparison to the chiral
complexes depicted in Scheme 1.
Synthesis of Chiral NHC Ligand and the Derived Ag(I)
Complex. The above hypothesis was brought to fruition in the
manner illustrated in Scheme 2. Treatment of commercially
available optically pure diamine 311 with aryliodide 412 in the
presence of 5 mol % Pd(OAc)2 and rac-BINAP with NaOt-Bu
(toluene, 110 °C, 24 h) leads to the formation of secondary
arylamine 5.13 At this point, the reaction mixture is charged
with 2 equiv of mesityl bromide (for 12 h), leading to the
formation of the desired diamine 6 in 65% overall yield for the
two-step, one-vessel procedure. Conversion of the methyl ether
to the corresponding phenol, followed by treatment with HCl
and triethylorthoformate, results in the generation of optically
pure imidazolinium salt 7 in 45% overall yield. Subjection of 7
to Ag2O at reflux for 3 h in a 1:1 mixture of THF and C6H6
leads to facile generation of Ag(I) complex 8 in >98% isolated
yield as a single diastereomer (>98% de, as judged by 400 MHz
1H NMR analysis). Thus, the diamine chirality is readily
transferred to the biphenol moiety, such that metal complexation
proceeds with complete control of stereoselectivity. The dia-
stereomer that is formed exclusively is one where the chelating
phenol moiety points away from the proximal phenyl unit of
the chiral diamine backbone. The structural assignment for
complex 8 is supported by an X-ray crystal structure, illustrated
in Scheme 2 (details in the Supporting Information).
Results and Discussion
1. A Readily Available Chiral Imidazolinium Salt and Its
Derived Ag(I) Complex. Chiral Ligand Design Consider-
ations. To obviate the requirement for the use of an optically
(5) Larsen, A. O.; Leu, W.; Nieto Oberhuber, C.; Campbell, J. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2004, 126, 11130-11131.
(6) For representative reports regarding Cu-catalyzed allylic alkylations involv-
ing alkylmetal reagents, see: (a) Dubner, F.; Knochel, P. Angew. Chem.,
Int. Ed. 1999, 38, 379-381. (b) Borner, C.; Gimeno, J.; Gladiali, S.;
Goldsmith, P. J.; Ramazzotti, D.; Woodward, S. Chem. Commun. 2000,
2433-2444. (c) Meuzelaar, G. J.; Karlstrom, A. S. E.; van Klaveren, M.;
Persson, E. S. M.; del Villar, A.; van Koten, G.; Backvall, J.-E. Tetrahedron
2000, 56, 2895-2903. (d) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy,
K. E.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001, 40, 1456-1460. (e)
Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001,
3, 1169-1171. (f) Karlstrom, A. S. E.; Huerta, F. F.; Meuzelaar, G. J.;
Backvall, J.-E. Synlett 2001, 923-926. (g) Alexakis, A.; Malan, C.; Lea,
L.; Benhaim, C.; Fournioux, X. Synlett 2001, 927-930. (h) Alexakis, A.;
Croset, K. Org. Lett. 2002, 4, 4147-4149. (i) Ongeri, S.; Piarulli, U.; Roux,
M.; Monti, C.; Gennari, C. HelV. Chim. Acta 2002, 85, 3388-3399. (j)
Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4690-
4691. (k) Shi, W.-J.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Zhou, Q.-L.
Tetrahedron: Asymmetry 2003, 14, 3867-3872. (l) Tissot-Croset, K.; Polet,
D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426-2428. (m)
Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 10676-
10681. (n) Murphy, K. E.; Hoveyda, A. H. Org. Lett. 2005, 7, in press.
(7) For representative recent examples involving NHC ligands in metal-
catalyzed reactions, see: (a) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.;
Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69-
82. (b) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67,
3029-3036. (c) Poyatos, M.; Uriz, P.; Mata, J. A.; Claver, C.; Fernandez,
E.; Peris, E. Organometallics 2003, 22, 440-444. (d) Viciu, M. S.; Kelly,
R. A.; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003,
5, 1479-1482. (e) Pytkowicz, J.; Roland, S.; Mangeney, P.; Meyer, G.;
Jutand, A. J. Organomet. Chem. 2003, 678, 166-179. (f) Gibson, S. E.;
Johnstone, C.; Loch, J. A.; Steed, J. W.; Stevenazzi, A. Organometallics
2003, 22, 5374-5377. (g) Park, K. H.; Kim, S. Y.; Son, S. U.; Chung, Y.
K. Eur. J. Org. Chem. 2003, 4341-4345. (h) Mahandru, G. M.; Liu, G.;
Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698-3699. (i) Lebel, H.;
Janes, M. K.; Charette, A. B.; Nolan, S. P. J. Am. Chem. Soc. 2004, 126,
5046-5047. (j) Kaur, H.; Kauer Zinn, F.; Stevens, E. D.; Nolan, S. P.
Organometallics 2004, 23, 1157-1160. (k) Hanasaka, F.; Fujita, K.-i.;
Yamaguchi, R. Organometallics 2004, 23, 1490-1492. (l) Navarro, O.;
Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69, 3173-3180.
(m) Palencia, H.; Garcia-Jiminez, F.; Takacs, J. M. Tetrahedron Lett. 2004,
45, 3849-3853.
2. Chiral Ru-Based Complexes Bearing Readily Available
Bidentate NHC Ligands as Efficient Catalysts for Enantio-
selective Olefin Metathesis. Synthesis of Chiral Ru-Chloride
and Iodide Complexes. As illustrated in Scheme 3, treatment
of chiral Ag(I) complex 8 with 1 equiv of achiral Ru complex
9 at 70 °C in THF leads to the formation of chiral Ru-chloride
10 in 42% isolated yield after silica gel chromatography. The
low isolated yield is due to partial decomposition of complex
(9) For application of a related strategy, see: Seiders, T. J.; Ward, D. W.;
Grubbs, R. H. Org. Lett. 2001, 3, 3225-3228.
(10) A chiral ligand may induce asymmetry in the coordination of a second
(and achiral in the absence of metal coordination) ligand, see: (a) Ringwald,
M.; Sturmer, R.; Brintzinger, H. H. J. Am. Chem. Soc. 1999, 121, 1524-
1527. (b) Mikami, K.; Korenaga, T.; Terada, M.; Ohkuma, T.; Pham, T.;
Noyori, R. Angew. Chem., Int. Ed. 1999, 38, 495-497. (c) Becker, J. J.;
White, P. S.; Gagne, M. R. J. Am. Chem. Soc. 2001, 123, 9478-9479. (d)
Mikami, K.; Aikawa, K. Org. Lett. 2001, 3, 243-245. (e) Mikami, K.;
Aikawa, K.; Yusa, Y.; Hatano, M. Org. Lett. 2002, 4, 91-94. (f) Mikami,
K.; Aikawa, K.; Yusa, Y. Org. Lett. 2002, 4, 95-97. (g) Mikami, K.;
Aikawa, K.; Org. Lett. 2002, 4, 99-101. (h) Aikawa, K.; Mikami, K.
Angew. Chem., Int. Ed. 2003, 42, 5458-5461. (i) Aikawa, K.; Mikami, K.
Angew. Chem., Int. Ed. 2003, 42, 5455-5458. (j) Pelz, K. A.; White, P.
S.; Gagne, M. R. Organometallics 2004, 23, 3210-3217.
(11) Diamine 3 can be prepared in the optically pure form (both antipodes) in
multigram quantities in ∼20% overall yield (five steps from benzaldehydes).
Procedures leading to the preparation of optically pure diamine 3 were
obtained from: (a) Kupfer, R.; Brinker, U. H. J. Org. Chem. 1996, 61,
4185-4186. (b) Williams, O. F.; Bailar, J. C. J. Am. Chem. Soc. 1959, 81,
4464-4469. (c) Corey, E. J.; Kuhnle, F. N. M. Tetrahedron Lett. 1997,
38, 8631-8634. (d) Pikul, S.; Corey, E. J. Org. Synth. 1993, 71, 22-29.
(12) Multigram quantities of aryl iodide 4 can be prepared in four steps, based
on modified published procedures, in 66% overall yield. See: (a) Collette,
J.; McGreer, D.; Crawford, R.; Chubb, F.; Sandin, R. B. J. Am. Chem.
Soc. 1956, 78, 3819-3820. (b) Fuson, R. C.; Albright, R. L. J. Am. Chem.
Soc. 1959, 81, 487-490.
(13) (a) Beletskaya, I. P.; Bessmertnykh, A. G.; Guillard, R. Tetrahedron Lett.
1997, 38, 2287-2290. (b) Canabal-Duvillard, I.; Mangeney, P. Tetrahedron
Lett. 1999, 40, 3877-3880. (c) Beletskaya, I. P.; Bessmertnykh, A. G.;
Guillard, R. Synlett 1999, 1459-1461. (d) Frost, C. G.; Mendonca, P.
Tetrahedron: Asymmetry 1999, 10, 1831-1834.
(8) For representative recent examples involving use of NHCs as chiral
catalysts, see: (a) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126,
8876-8877. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc.
2004, 126, 14370-14371. (c) Burstein, C.; Glorius, F. Angew. Chem., Int.
Ed. 2004, 43, 6205-6208. (d) Suzuki, Y.; Yamaguchi, K.; Muramatsu,
K.; Sato, M. Chem. Commun. 2004, 2770-2771. For related brief
overviews, see: (e) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int.
Ed. 2004, 43, 5130-5135. (f) Enders, D.; Balensiefer, T. Acc. Chem. Res.
2004, 37, 534-541.
9
6878 J. AM. CHEM. SOC. VOL. 127, NO. 18, 2005