Letters
Journal of Medicinal Chemistry, 2004, Vol. 47, No. 27 6657
Scheme 1. Synthesis of Antagonists 4-6a
Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs.
1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887-2893.
(2) (a) Oprea, T. I.; Matter, H.Integrating Virtual Screening in Lead
Discovery Curr. Opin. Chem. Biol. 2004, 8, 349-358. For
“scaffold hopping” see: (b) Schneider, G.; Neidhart, W.; Giller,
T. Schmid, G. “Scaffold-Hopping” by Topological Pharmacophore
Search: A Contribution to Virtual Screening. Angew Chem., Int.
Ed. 1999, 38, 2894-2896. (c) Lloyd, D. G.; Buenemann, C. L.;
Todorov, N. P.; Manallack, D. T.; Dean, P. M. Scaffold Hopping
in De Novo Design. Ligand Generation in the Absence of
Receptor Information. J. Med. Chem. 2004, 47, 493-496.
(3) Burke, M. D.; Schreiber, S. L. A Planning Strategy for Diversity-
Oriented Synthesis Angew Chem., Int. Ed. 2004, 43, 46-58.
Burke, M. D.; Berger, E. M.; Schreiber, S. L. Generating Diverse
Skeletons of Small Molecules Combinatorially. Science 2003,
302, 613-618.
(4) Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.;
Kangawa, K.Ghrelin Is a Growth-Hormone-Releasing Acylated
Peptide from Stomach Nature 1999, 402, 656-660.
(5) Carpino, P. A. Recent Developments in Ghrelin Receptor (GHS-
R1a) Agonists and Antagonists, Expert Opin. Ther. Pat. 2002,
12, 1599-1618.
(6) (a) Wren, A. M.; Small, C. J.; Ward, H. L.; Murphy, K. G.; Dakin,
C. L.; Taheri, S.; Kennedy, A. R.; Roberts, G. H.; Morgan, D.
G.;Ghatei, M. A.; Bloom, S. R. The Novel Hypothalamic Peptide
Ghrelin Stimulates Food Intake and Growth Hormone Secretion.
Endocrinology 2000, 141, 4325-4328. (b) Wren, A. M.; Small,
C. J.; Abbott, C. R.; Dhillo, W. S.; Seal, L. J.; Cohen, M. A.;
Batterham, R. L.; Taheri, S.; Stanley, S. A.; Ghatei, M. A.; Bloom,
S. R. Ghrelin Causes Hyperphagia and Obesity in Rats. Diabetes
2001, 50, 2540-2547.
(7) Wren, A. M.; Seal, L. J.; Cohen, M. A.; Brynes, A. E.; Frost, G.
S.; Murphy, K. G.; Dhillo, W. S.; Ghatei, M. A.; Bloom, S. R.
Ghrelin Enhances Appetite and Increases Food Intake in
Humans. J. Clin. Endocrinol. Metab. 2001, 86, 5992-5995.
(8) Murakami, N.; Hayashida, T.; Kuroiwa, T.; Nakahara, K.; Ida,
T.; Mondal, M. S.; Nakazato, M.; Kojima, M.; Kangawa, K.
Role for Central Ghrelin in Food Intake and Secretion Pro-
file of Stomach Ghrelin in Rats. J. Endocrinol. 2002, 174, 283-
288.
a
i
Reagents and conditions: (a) 1. TFA; 2. BuOCOCl, Et3N;
(b) 1. MeOH, HCl; 2. iBuOCOCl, Et3N; 3. NaOH(aq); 4.
p-NH2C4H6NEt2, TBTU, Et3N; (c) 1. MeI, K2CO3; 2. LDA, BOC2O;
i
(d) 1. LiOH; 2. (Ph)2(PdO)N3; 3. BuOH; (e) 1. MeI, NaH; 2.TFA;
3. p-NH2C4H6NEt2, TBTU, Et3N.
(9) Asakawa, A.; Inui. A.; Kaga, T.; Katsuura, G.; Fujimiya, M.;
Fujino, M. A.; Kasuga, M. Antagonism of Ghrelin Receptor
Reduces Food Intake and Body Weight Gain in Mice. Gut 2003,
52, 947-952.
(10) Liu, B.; Liu, G.; Xin, Z.; Serby, M. D.; Zhao, H.; Schaefer, V. G.;
Falls, H. D.; Kaszubska, W.; Collins, C. A.; Sham, H. L. Novel
Isoxazole Carboxamides as Growth Hormone Secretagogue
Receptor (GHS-R) Antagonists. Bioorg. Med. Chem. Lett. 2004,
14, 5223-5226.
(11) Cheng, K.; Chan, W. W. S.; Butler, B.; Wei, L.; Smith, R. G. A
Novel Non-Peptidyl Growth Hormone Secretagogue. Horm. Res.
1993, 40, 109-115.
(12) Lugar, C. W.; Clay, M. P.; Lindstrom, T. D.; Woodson, A. L.;
Smiley, D.; Heiman, M. L.; Dodge, J. A. Synthesis and Biological
Evaluation of an Orally Active Ghrelin Agonist That Stimulates
Food Consumption and Adiposity in Rats. Bioorg. Med. Chem.
Lett. 2004, 14, 5873-5876.
(13) (a) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and Computational Approaches to Estimate Solu-
bility and Permeability in Drug Discovery and Development
Settings. Adv. Drug Delivery Rev. 1997, 23, 3-25. (b) Veber, D.
F.; Johnson, S. R.; Cheng, H.; Smith, B. R.; Ward, K. W.; Kopple,
K. D. Molecular Properties That Influence the Oral Bioavail-
ability of Drug Candidates. J. Med. Chem. 2002, 45, 2615-2623.
(14) For discussion of isosterism see: Thornber, C. W. Isosterism and
Molecular Modification in Drug Design. Chem. Soc. Rev. 1979,
8, 563-580.
10. Methylation of the carbamate nitrogen in 10 fol-
lowed by TFA removal of the tert-butyl group and TBTU
coupling to N,N-diethylphenylenediamine produced 6.
In conclusion, based on the SAR information on a hit
compound (1) synthesized in one step from commercially
available materials, we have identified a more complex,
specific, efficient, and proprietary scaffold. Potent, selec-
tive, and bioavailable GHS-R antagonists were discov-
ered. The key to this approach was to use the SAR
information as guidance to conceive a cluster of closely
resembled and synthetically accessible scaffolds that are
suitable for further SAR studies. This approach exhib-
ited a good success rate and synergized the molecular
design (complexity) and combinatorial synthesis (through-
put). As indicated in a recent analysis, the current drug
discovery paradigm relies strongly on the quality of the
lead compounds.19 So the practitioners need to be
conscious about evaluating the quality of the hits, and
scaffold modifications might frequently be a necessary
practice.
(15) Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T. The Design
of Leadlike Combinatorial Libraries. Angew. Chem., Int. Ed.
1999, 38, 3743-3748.
Acknowledgment. We thank Dr. David W. A. Beno
for determining rat oral bioavailability, Mr. Gilbert Diaz
and Ms. Sandra Leitza for running the hERG assay, and
Ms. April Miao of Millennium Pharmaceuticals, Inc., for
generating the GPCR selectivity data.
(16) Other scaffolds will be disclosed elsewhere.
(17) Hann, M. M.; Leach, A. R.; Harper, G. Molecular Complexity
and Its Impact on the Probability of Finding Leads for Drug
Discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856-864.
(18) Cordi, A. A.; Lacoste, J. M.; Descombes, J. J.; Courchay, C.;
Vanhoutte, P. M.; Laubie, M.; Verbeuren, T. J. Design, Synthe-
sis, and Structure-Activity Relationships of a New Series of
R-Adrenergic Agonists: Spiro[(1,3-Diazacycylpent-1-ent)-5,2′-
(1′,2′,3′,4′-tetrahydronaphthalene). J. Med. Chem. 1995, 38,
4056-4069.
Supporting Information Available: Experimental pro-
cedures and spectral characterization of compounds 1-6.
This material is available free of charge via the Internet at
(19) Proudfoot. J. R. Drugs, Leads, and Drug-Likeness: An Analysis
of Some Recently Launched Drugs. Bioorg. Med. Chem. Lett.
2002, 12, 1647-1650.
References
(1) It has been shown that shapes of 50% of marked drugs could be
described by the 32 most frequently occurring frameworks.
JM0491750