Communication
ChemComm
In conclusion, the first halogen-bonding l3-bromane
catalyst was developed and characterised by X-ray crystallo-
graphic analysis. Its performance in the catalysis of the Michael
reaction was evaluated, and its wide substrate scope suggests
broad applicability. Mechanistic studies disclosed that the
intact l3-bromane, rather than the decomposition products,
functioned as the active catalyst in the reaction. Further inves-
tigations to develop chiral versions of these catalysts are
ongoing.
We are grateful for financial support from a Grant-in-Aid for
Early-Career Scientists (No. 20K15271) from the JSPS, and the
Leading Research Promotion Program ‘Soft Molecular Activa-
tion’ of Chiba University, Japan.
´
B. L. Toth, G. L. Tolnai and Z. Novak, Synlett, 2016, 1456;
( j) R. Haraguchi, T. Nishikawa, A. Kanazawa and S. Aoshima,
Macromolecules, 2020, 53, 4185.
5 (a) G. K. S. Prakash, M. R. Bruce and G. A. Olah, J. Org. Chem., 1985,
50, 2405; (b) M. Ochiai, N. Tada, K. Murai, S. Goto and M. Shiro,
J. Am. Chem. Soc., 2006, 128, 9608; (c) M. Ochiai, N. Tada, T. Okada,
A. Sota and K. Miyamoto, J. Am. Chem. Soc., 2008, 130, 2118;
(d) K. Miyamoto, M. Shiro and M. Ochiai, Angew. Chem., Int. Ed.,
2009, 48, 8931; (e) M. Ochiai, T. Okubo and K. Miyamoto, J. Am.
Chem. Soc., 2011, 133, 3342; ( f ) M. Ochiai, K. Miyamoto, T. Kaneaki,
S. Hayashi and W. Nakanishi, Science, 2011, 332, 448; (g) M. Ochiai,
S. Yamane, M. M. Hoque, M. Saito and K. Miyamoto,
Chem. Commun., 2012, 48, 5280; (h) S. Riedmu¨ller and
B. J. Nachtsheim, Beilstein J. Org. Chem., 2013, 9, 1202.
6 (a) C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165;
(b) V. V. Grushin, Acc. Chem. Res., 1992, 25, 529; (c) M. Ochiai,
Y. Nishi, S. Goto, M. Shiro and H. J. Frohn, J. Am. Chem. Soc., 2003,
125, 15304; (d) D. R. Lide, CRC Handbook of Chemistry and Physics,
(e) M. Ochiai, Synlett, 2009, 159.
7 (a) A. Farina, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati
and G. Vecchio, Angew. Chem., Int. Ed., 1999, 38, 2433; (b) G. Cavallo,
P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and
G. Terraneo, Chem. Rev., 2016, 116, 2478; (c) F. Heinen,
E. Engelage, C. J. Cramer and S. M. Huber, J. Am. Chem. Soc.,
2020, 142, 8633; (d) J. Holthoff, E. Engelage, R. Weiss and
S. M. Huber, Angew. Chem., Int. Ed., 2020, 59, 11150; (e) J. Wolf,
F. Huber, N. Erochok, F. Heinen, V. Guerin, C. Legault, S. Kirsch and
S. M. Huber, Angew. Chem., Int. Ed., 2020, 59, 16496.
8 (a) B. List, R. A. Lerner and C. F. Barbas, J. Am. Chem. Soc., 2000,
122, 2395; (b) K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan,
J. Am. Chem. Soc., 2000, 122, 4243. For reviews see:
(c) D. W. C. MacMillan, Nature, 2008, 455, 304; (d) T. Akiyama,
Chem. Rev., 2007, 107, 5744; (e) A. G. Doyle and E. N. Jacobsen,
Chem. Rev., 2007, 107, 5713; ( f ) S. Mukherjee, J. W. Yang,
S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471.
9 Reports on halogen bond catalyst: see: (a) C. Bolm, A. Bruckmann
and M. Pena, Synlett, 2008, 900; (b) S. Jiang, L. Zhang, D. Cui, Z. Yao,
B. Gao, J. Lin and D. Wei, Sci. Rep., 2016, 6, 34750; (c) S. Kuwano,
T. Suzuki, Y. Hosaka and T. Arai, Chem. Commun., 2018, 54, 3847;
(d) Y.-C. Chan and Y.-Y. Yeung, Angew. Chem., Int. Ed., 2018,
57, 3483; (e) R. Haraguchi, S. Hoshino, M. Sakai, S. Tanazawa,
Y. Morita, T. Komatsu and S. Fukuzawa, Chem. Commun., 2018,
54, 10320; ( f ) Y. Kobayashi, Y. Nakatsuji, S. Li, S. Tsuzuki and
Y. Takemoto, Angew. Chem., Int. Ed., 2018, 57, 3646; (g) T. Arai,
K. Horigane, O. Watanabe, J. Kakino, N. Sugiyama, H. Makino,
Y. Kamei, S. Yabe and M. Yamanaka, iScience, 2019, 12, 280;
(h) S. Kuwano, T. Suzuki, M. Yamanaka, R. Tsutsumi and T. Arai,
Angew. Chem., Int. Ed., 2019, 58, 10220; (i) R. A. Squitieri,
K. P. Fitzpatrick, A. A. Jaworski and K. A. Scheidt, Chem. – Eur. J.,
2019, 25, 10069; ( j) R. L. Sutar, E. Engelage, R. Stoll and
S. M. Huber, Angew. Chem., Int. Ed., 2020, 59, 6806.
10 Reports on halonium-type halogen bond catalyst: see (a) F. Guo,
L. Wang, S. Mao, C. Zhang, J. Yu and J. Han, Tetrahedron, 2012,
68, 8367; (b) Y. Zhang, J. Han and Z.-J. Liu, RSC Adv., 2015, 5, 25485;
(c) F. Heinen, E. Engelage, A. Dreger, R. Weiss and S. M. Huber,
Angew. Chem., Int. Ed., 2018, 57, 3830; (d) R. J. Mayer,
A. R. Ofial, H. Mayr and C. Y. Legault, J. Am. Chem. Soc., 2020,
142, 5221.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) R. B. Sandin and A. S. Hay, J. Am. Chem. Soc., 1952, 74, 274;
(b) E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009,
48, 9052; (c) M. Nakajima, K. Miyamoto, K. Hirano and
M. Uchiyama, J. Am. Chem. Soc., 2019, 141, 6499. For reviews: see:
(d) U. Farooq, A. U. Shah and T. Wirth, Angew. Chem., Int. Ed., 2009,
48, 1018; (e) A. Yoshimura and V. V. Zhdankin, Chem. Rev., 2016,
´
116, 3328; ( f ) L. Turunen and M. Erdelyi, Chem. Soc. Rev., 2020,
49, 2688.
2 (a) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji,
H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,
2008, 47, 3787; (b) M. Fujita, Y. Yoshida, K. Miyata, A. Wakisaka and
T. Sugimura, Angew. Chem., Int. Ed., 2010, 49, 7068; (c) M. Uyanik,
T. Yasui and K. Ishihara, Angew. Chem., Int. Ed., 2010, 49, 2175;
(d) M. Uyanik, T. Yasui and K. Ishihara, Angew. Chem., Int. Ed., 2013,
52, 9215; For reviews; see: (e) R. Corbo and J. L. Dutton,
Coord. Chem. Rev., 2018, 375, 69; ( f ) S. V. Kohlhepp and
T. Gulder, Chem. Soc. Rev., 2016, 45, 6270; (g) A. Parra, Chem. Rev.,
2019, 119, 12033.
3 Recent reports on hypervalent iodine chemistry: see (a) H. Wu,
Y.-P. He, L. Xu, D.-Y. Zhang and L.-Z. Gong, Angew. Chem., Int. Ed.,
2014, 53, 3466; (b) S. M. Banik, J. W. Medley and E. N. Jacobsen,
Science, 2016, 353, 51; (c) Y. Yoshida, A. Magara, T. Mino and
M. Sakamoto, Tetrahedron Lett., 2016, 57, 5103; (d) M. Shimogaki,
M. Fujita and T. Sugimura, Angew. Chem., Int. Ed., 2016, 55, 15797;
(e) T. Hashimoto, Y. Shimazaki, Y. Omatsu and K. Maruoka,
Angew. Chem., Int. Ed., 2018, 57, 7200; ( f ) M. S. Yusubov,
N. S. Soldatova, P. S. Postnikov, R. R. Valiev, A. Yoshimura,
T. Wirth, V. N. Nemykin and V. V. Zhdankin, Chem. Commun.,
2019, 55, 7760; (g) Y. Aota, T. Kano and K. Maruoka, J. Am. Chem.
Soc., 2019, 141, 19263; (h) K. Kiyokawa, D. Okumatsu and
S. Minakata, Angew. Chem., Int. Ed., 2019, 58, 8907; (i) Y. Yoshida,
Y. Kanashima, T. Mino and M. Sakamoto, Tetrahedron, 2019,
75, 3840; ( j) W. Ding, J. Chai, C. Wang, J. Wu and N. Yoshikai,
J. Am. Chem. Soc., 2020, 142, 8619.
11 G. Cavallo, J. S. Murray, P. Politzer, T. Pilati, M. Ursini and
G. Resnati, IUCrJ, 2017, 4, 411. See ESI† for more details.
12 Our bromonium salts are very stable even for several month storage
at room temperature under air atmosphere. Also, after the reaction
in Table 2, entry 5, 80% recovering of 3b could be found on crude
1H NMR analysis using 1,3,5-trimethoxybenzene as an internal
standard.
4 (a) M. Ochiai, K. Oshima and Y. Masaki, J. Am. Chem. Soc., 1991,
113, 7059; (b) M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka and
M. Shiro, J. Am. Chem. Soc., 1999, 121, 9233; (c) V. V. Zhdankin and
P. J. Stang, Chem. Rev., 2008, 108, 5299; (d) R. J. Phipps,
N. P. Grimster and M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 8172;
(e) R. J. Phipps and M. J. Gaunt, Science, 2009, 323, 1593;
( f ) E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009,
48, 9052; (g) Y. Zeng, G. Li and J. Hu, Angew. Chem., Int. Ed., 2015,
54, 10773; (h) K. Miyamoto, S. Iwasaki, R. Doi, T. Ota, Y. Kawano,
13 R. B. Sandin, M. Kulka and R. McCready, J. Am. Chem. Soc., 1937,
59, 2014.
J. Yamashita, Y. Sakai, N. Tada, M. Ochiai, S. Hayashi, W. Nakanishi 14 R. B. Sandin, F. T. McClure and F. Irwin, J. Am. Chem. Soc., 1939,
and M. Uchiyama, J. Org. Chem., 2016, 81, 3188; (i) K. Aradi, 61, 2944.
2522 | Chem. Commun., 2021, 57, 2519ꢀ2522
This journal is The Royal Society of Chemistry 2021