C O M M U N I C A T I O N S
Scheme 4
Scheme 5
Supporting Information Available: Experimental procedures,
characterization data, and computational details. This material is
References
(1) For reviews on transition metal-catalyzed C-H functionalization: (a) Dick,
A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439-2463. (b) Yu, J.-Q.;
Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041-4047. (c) Daugulis,
O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett
2006, 3382-3388. (d) Goj, L. A.; Gunnoe, T. B. Curr. Org. Chem. 2005,
9, 671-685. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002,
102, 1731-1769. (f) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698-
1712.
(2) (a) Takemiya, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10480-
10481. (b) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.;
Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 13684-13685. (c) Paul, S.;
Chotana, G. A.; Holmes, D.; Reichle, R. C.; Maleczka, R. E., Jr.; Smith,
M. R., III. J. Am. Chem. Soc. 2006, 128, 15552-15553. (d) Shi, Z.; He,
C. J. Am. Chem. Soc. 2004, 126, 13596-13597.
(3) (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders,
L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510-3511. (b) Delcamp,
J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076-15077. (c)
Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem.
Soc. 2004, 126, 7460-7461. (d) Hennessy, E. J.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 12084-12085.
(4) For examples: (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M.
S. J. Am. Chem. Soc. 2006, 128, 4972-4973. (b) Chen, X.; Goodhue, C.
E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634-12635. (c) Beck, E.
M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006,
128, 2528-2529. (d) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem.
Soc. 2005, 127, 13148-13149. (e) Zaitsev, V. G.; Shabashov, D.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154-13155. (f) Lane, B.
S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050-8057.
(g) Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P. Org. Lett.
2004, 6, 3981-3983. (h) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.;
Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 2452-2462. (i) Chotana,
G. A.; Rak, M. A.; Milton R. Smith, I. J. Am. Chem. Soc. 2005, 127,
10539-10544.
Scheme 6
(5) For examples: (a) Bowie, A. L., Jr.; Hughes, C. C.; Trauner, D. Org.
Lett. 2005, 7, 5207-5209. (b) Baran, P. S.; Richter, J. M.; Lin, D. W.
Angew. Chem., Int. Ed. 2005, 44, 609-612. (c) Garg, N. K.; Caspi, D.
D.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 9552-9553. (d) Hinman,
A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511. For the use
of stoichiometric amounts of Pd, see: (e) Johnson, J. A.; Li, N.; Sames,
D. J. Am. Chem. Soc. 2002, 124, 6900-6903. (f) Garc´ıa-Granados, A.;
Lo´pez, P. E.; Melguizo, E.; Parra, A.; Simeo´, Y. J. Org. Chem. 2007, 72,
3500-3509.
that H-5 in 3 does not undergo a Wacker-type depalladative 1,2-H
shift (C5 f C4)13 to give 2 after losing a proton.
We have also ruled out the possibility of electrophilic palladation
mechanism.14 A secondary,4f instead of the observed primary KIE
(Scheme 3) with 1 is expected for the electrophilic pathway. The
regioselectivity of 8 (Scheme 4) is also opposite to that of the
electrophilic reactions. Only the C-H insertion mechanism (Scheme
5) is consistent with all the experimental data. Our DFT calculations
(B3LYP/LACVP**++)15 support the acetate ligand-assisted C-H
insertion pathway.
The synthetic utility of this catalytic C-H activation reaction is
illustrated with the synthesis of dibromophakellstatin (Scheme 6).
The direct coupling of 1 and vinyl bromide 11 proceeded smoothly.
Imidazolinone 12, together with the resultant palladium black, was
subjected to hydrogenation, phthalimide deprotection, and acyl
pyrrole installation to give 13.8 While the bromine oxidants were
reported to promote the biomimetic oxidative cyclization7a,f of 13
with only modest efficiency, we have found that oxidation of 13
with PhI(OAc)2 gave dibromophakellstatin in nearly quantitative
yield.
(6) Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J.-C.;
Schmidt, J. M.; Tackett, L. P.; Boyd, M. R., J. Nat. Prod. 1997, 60, 180-
183.
(7) For previous synthesis: (a) Wiese, K. J.; Yakushijin, K.; Horne, D. A.,
Tetrahedron Lett. 2002, 43, 5135-5136. (b) Poullennec, K. G.; Romo,
D. J. Am. Chem. Soc. 2003, 125, 6344-6345. (c) Chung, R.; Yu, E.;
Incarvito, C. D.; Austin, D. J. Org. Lett. 2004, 6, 3881-3884. (d) Feldman,
K. S.; Skoumbourdis, A. P. Org. Lett. 2005, 7, 929-931. (e) Jacquot, D.
E. N.; Zo¨llinger, M.; Lindel, T. Angew. Chem., Int. Ed. 2005, 44, 2295-
2298. For synthesis of the related alkaloid dibromophakellin: (f) Foley,
L. H.; Bu¨chi, G. J. Am. Chem. Soc. 1982, 104, 1776-1777.
(8) See Supporting Information for further discussions.
(9) (a) Lautens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 3679-3682. (b) Maeda,
K.; Farrington, E. J.; Galardon, E.; John, B. D.; Brown, J. M. AdV. Synth.
Catal. 2002, 344, 104-109. (c) Takacs, J. M.; Lawson, E. C.; Clement,
F. J. Am. Chem. Soc. 1997, 119, 5956-5957.
(10) The SN2 inversion of a Pd-bound sp3 carbon stereogenic center by Pd(0)
is rare and sensitive to steric factors: (a) Lau, K. S. Y.; Wong, P. K.;
Stille, J. K. J. Am. Chem. Soc. 1976, 98, 5832-5840. On the other hand,
inversion of a π-allyl palladium complex is more common: (b) Trost, B.
M.; Verhoeven, T. R. J. Am. Chem. Soc. 1976, 98, 630-632.
(11) (a) Farina, V.; Hossain, M. A. Tetrahedron Lett. 1996, 37, 6997-7000.
(b) Busacca, C. A.; Swestock, J.; Johnson, R. E.; Bailey, T. R.; Musza,
L.; Rodger, C. A. J. Org. Chem. 1994, 59, 7553-7556. (c) Holtcamp, M.
W.; Henling, L. M.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. Inorg.
Chim. Acta 1998, 270, 467-478. (d) Schrock, R. R.; Seidel, S. W.; Mo¨sch-
Zanetti, N. C.; Shih, K.-Y.; O’Donoghue, M. B.; Davis, W. M.; Reiff,
W. M. J. Am. Chem. Soc. 1997, 119, 11876-11893.
In summary, we have developed a palladium catalyst system that
allows the direct arylation and vinylation of imidazolinone under
mild conditions. This method is proved useful in natural product
synthesis. Dibromophakellstatin was synthesized with significantly
improved efficiency (40% overall yield).
(12) The formation of bis-arylation products with extended reaction time also
indicates that the R-H elimination is not operating, as there is no H R to
the Pd in the second arylation step.
(13) (a) Cornell, C. N.; Sigman, M. S. J. Am. Chem. Soc. 2005, 127, 2796-
2797. (b) Smidt, J. Chem. Ind. (London) 1962, 54-61.
(14) (a) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. ReV. 2005, 105, 2527-
2571. (b) Ryabov, A. D. Chem. ReV. 1990, 90, 403-424.
Acknowledgment. Financial supports are provided by NIH
(Grant NIGMS R01-GM079554), Welch Foundation (I-1596), and
UT Southwestern. C.C. is a Southwestern Medical Foundation
Scholar in Biomedical Research.
(15) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (b) Keith, J.
A.; Oxgaard, J.; Goddard, W. A., III. J. Am. Chem. Soc. 2006, 128,
3132-3133.
JA072844P
9
J. AM. CHEM. SOC. VOL. 129, NO. 25, 2007 7769