ORGANIC
LETTERS
2005
Vol. 7, No. 13
2691-2693
Novel Synthesis of Castanospermine
and 1-Epicastanospermine
Linda Cronin and Paul V. Murphy*
Department of Chemistry, Centre for Synthesis and Chemical Biology, Conway
Institute of Biomolecular and Biomedical Research, UniVersity College Dublin,
Belfield, Dublin 4, Ireland
Received April 19, 2005
ABSTRACT
Polyhydroxylated indolizidines have potential for treatment of HIV, hepatitis C and HSV infection, multiple sclerosis, angiogenesis, cancer, and
diabetes. A new synthetic approach to the title compounds from a 5-C-methoxypyranosyl azide has been developed. The route incorporates
the aldol reaction and a novel catalytic reductive amination cascade to generate the indolizidine ring.
Castanospermine 1a is a bioactive naturally occurring
polyhydroxylated indolizidine, first isolated from seeds of
Castanospermum australe.1 It and closely related congeners
have shown considerable potential as antiviral agents for the
treatment of HIV,2 hepatitis C,3 and HSV-14 infections. They
also have potential for inhibition of progression of multiple
sclerosis,5 angiogenesis, cancer,6 and diabetes.7 The develop-
ment of new synthetic routes to castanospermine enable the
production of novel analogues for biological studies, and a
number of syntheses of 1 have been developed.8 Herein we
present a novel synthesis of castanospermine 1a and 1-epi-
castanospermine 1b from methyl R-D-glucopyranoside.
We have recently reported a general synthesis of imino-
sugars from 5-C-methoxypyranosyl azides (e.g., production
of 3 from 2).9 We were interested to investigate extending
the catalytic reductive amination cascade reaction used for
(1) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce,
R. J.; Arnold, E.; Clardy, J. Phytochemistry 1981, 20, 811.
(2) (a) De Clercq, E. Med. Res. ReV. 2000, 20, 323. (b) Fleet, G. W. J.;
Karpas, A.; Dwek, R. A.; Fellows, L. E.; Tyms, A. S.; Petursson, S.;
Namgoong, S. K.; Ramsden, N. G.; Smith, P. W.; Son, J. C.; Wilson, F.;
Witty, D. R.; Jacobs, G. S.; Rademacher, T. W. FEBS Lett. 1988, 237,
128.
(8) For selected syntheses of 1a and 1b, see: (a) Tyler, P. C.; Winchester,
B. G. In Iminosugars as Glycosidase Inhibitors; Stuetz, A., Ed.; Wiley-
VCH Verlag GmbH: Weinheim, Germany, 1999; pp 125-156. (b) Michael,
J. P. Nat. Prod. Rep. 2004, 21, 625. (c) Somfai, P.; Marchand, P.; Torsell,
S.; Lindstrom, U. M. Tetrahedron 2003, 59, 1293. (c) Zhao, H.; Mootoo,
D. R. J. Org. Chem. 1996, 61, 6762. (d) Kim, J. H.; Woo, D.; Lee, J. H.;
Lee, B. W.; Park, K. H. Synthesis 2003, 2473. (e) Denmark, S. E.; Herbert,
B. J. Org. Chem. 2000, 65, 2887. (f) Grassberger, V.; Berger, A.; Dax, K.;
Fechter, M.; Gradnig, G.; Stuetz, A. E. Liebigs Ann. Chem. 1993, 379. (g)
Mulzer, J.; Dehmlow, H.; Buschmann, J.; Luger, P. J. Org. Chem. 1992,
57, 3194. (h) Bernotas, R. C.; Ganem, B. Tetrahedron Lett. 1984, 25, 165.
(i) Setoi, H.; Takeno, H.; Hashimoto, M. Tetrahedron Lett. 1985, 26, 4617.
(3) Whitby, K.; Taylor, D.; Patel, D.; Ahmed, P.; Tyms, A. S. AntiViral
Chem. Chemother. 2004, 15, 141.
(4) Bridges, C. G.; Ahmed, S. P.; Kang, M. S.; Nash, R. J.; Porter, E.
A.; Tyms, A. S. Glycobiology, 1995, 5, 249.
(5) Walter, S.; Fassbender, K.; Gulbins, E.; Liu, Y.; Rieschel, M.; Herten,
M.; Bertsch, T.; Engelhardt, B. J. Neuroimmunology 2002, 132, 1.
(6) Pili, R.; Chang, J.; Partis, R. A.; Mueller, R. A.; Chrest, F. J.;
Passaniti, A. Cancer Res. 1995, 55, 2920.
(7) Nojima, H.; Kimura, I.; Chen, F.-J.; Sugihara, Y.; Haruno, M.; Kato,
A.; Asano, N. J. Nat. Prod. 1998, 61, 397.
10.1021/ol0508577 CCC: $30.25
© 2005 American Chemical Society
Published on Web 05/27/2005