efficiently in high regioselectivity and modest enantioselec-
tivity when conducted in the presence of catalytic amounts
of a P-chiral, ferrocenyl monodentate phosphine ligand
(Scheme 1).
more direct approach, as both alkyne reduction and C-C
bond formation occur in the same catalytic pathway and the
stoichiometric use of a transition metal is avoided.
Initial attempts to promote the catalytic reductive coupling
of 1-decen-3-yne (1) and acetophenone using triethylborane
(Et3B) as a stoichiometric reductant and catalytic amounts
of both Ni(cod)2 and tricyclopentylphosphine (Cyp3P), a
ligand that had proven particularly effective in promoting
reductive couplings of 1,3-enynes and aldehydes, were
completely unsuccessful. Only a trace of the desired coupling
product was observed, even at elevated temperature (Table
1, entry 1). Similar results were obtained with both tris(o-
Scheme 1
The enantioselective generation of quaternary stereocenters
is generally a formidable challenge. Recently, several
catalytic, asymmetric methods that achieve this goal have
been developed,14 and addition reactions to ketones have
attracted significant attention, as they provide access to
enantiomerically enriched tertiary alcohols.15 Walsh has
reported highly enantioselective, catalytic additions of alk-
enylzirconium reagents (prepared by in situ hydrozirconation
of a terminal alkyne) to ketones.16,17 The catalytic, asym-
metric reductive coupling of alkynes and ketones reported
herein allows for the use of internal alkynes and affords a
Table 1. Ligand Evaluation in Catalytic Reductive Couplings
of 1,3-Enynes and Acetophenonea
yield (%),
regioselectivityb eec (%)
entry R1
R2
R3P
1
2
3
4
5
6
7d
8e
H
H
H
H
H
Me
Me
Me
n-Hex (1)
Cyp3P
<2 (n.d.)
<2 (n.d.)
<2 (n.d.)
68 (>95:5)
44 (>95:5)
79 (>95:5)
89 (>95:5)
69 (>95:5)f
n-Hex (1) (o-anisyl)3P
n-Hex (1) CyPPh2
n-Hex (1) (+)-NMDPP
n-Hex (1)
Et (3)
17
FcPPh2
FcPPh2
(S)-4
Et (3)
Et (3)
58
64
(S)-4
(8) Transition metal mediated reductive coupling of alkynes and ketones
(stoichiometric in transition metal): (a) Buchwald, S. L.; Watson, B. T.;
Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 2544-2546. (b) Kataoka, Y.;
Miyai, J.; Oshima, K.; Takai, K.; Utimoto, K. J. Org. Chem. 1992, 57,
1973-1981. (c) Takahashi, T.; Xi, C.; Xi, Z.; Kageyama, M.; Fischer, R.;
Nakajima, K.; Negishi, E. J. Org. Chem. 1998, 63, 6802-6806. (d) Ozerov,
O. V.; Brock, C. P.; Carr, S. D.; Ladipo, F. T. Organometallics 2000, 19,
5016-5025.
(9) Reductive cyclizations of alkynes and ketones promoted by samarium
diiodide. Reviews: (a) Molander, G. A. Chem. ReV. 1992, 92, 29-68. (b)
Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. ReV. 2004, 104, 3371-
3403. Examples: (c) Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989,
111, 8236-8246. (d) Berndt, M.; Gross, S.; Ho¨lemann, A.; Reissig, H.-U.
Synlett 2004, 422-438. (e) Ho¨lemann, A.; Reissig, H.-U. Synlett 2004,
2732-2735.
(10) For example, see: (a) Tejedor, D.; Garcia-Tellado, F.; Marrero-
Tellado, J. J.; de Armas, P. Chem. Eur. J. 2003, 3122-3131. (b) Bharadwaj,
A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465-2468.
a See Scheme 1. Standard procedure: To Ni(cod)2 (0.05 mmol), R3P
(0.1 mmol), acetophenone (1.0 mmol), and Et3B (1.0 mmol) at 50 °C was
added dropwise the enyne (0.5 mmol) over 6 h. After an additional 12 h,
silica gel chromatography afforded dienols 2 and 5 as mixtures with
acetophenone. b Yield and regioselectivity determined by 1H NMR integra-
tion. c Determined by HPLC analysis, Chiralcel OJ column. d Reaction
conducted at 35 °C. e Reaction conducted at 23 °C. f Isolated yield of 5
following treatment of crude reaction mixture with NaBH4 at 0 °C. n.d. )
not determined.
methoxyphenyl)phosphine ((o-anisyl)3P, entry 2) and cyclo-
hexyldiphenylphosphine (CyPPh2, entry 3). To our delight,
however, the use of (+)-neomenthyldiphenylphosphine
(NMDPP, Figure 1) led to an efficient catalytic reductive
(11) Titanocene-catalyzed intramolecular alkene-ketone cyclocarbony-
lation: (a) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem.
Soc. 1997, 119, 4424-4431. (b) Mandal, S. K.; Amin, S. R.; Crowe, W. E.
J. Am. Chem. Soc. 2001, 123, 6457-6458.
(12) Catalytic intramolecular allene-ketone cyclizations: (a) Kang, S.-
K.; Yoon, S.-K. Chem. Commun. 2002, 2634-2635. (b) Kang, S.-K.; Ha,
Y.-H.; Ko, B.-S.; Lim, Y.; Jung, J. Angew. Chem., Int. Ed. 2002, 41, 343-
345. (c) Kang, S.-K.; Hong, Y.-T.; Lee, J.-H.; Kim, W.-Y.; Lee, I.; Yu,
C.-M. Org. Lett. 2003, 5, 2813-2816.
(13) Rh-catalyzed carbometallative aldol cycloreduction: (a) Cauble, D.
F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110-
1111. (b) Bocknack, B. M.; Wang, L.-C.; Krische, M. J. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5421-5424.
(14) Reviews: (a) Fuji, K. Chem. ReV. 1993, 93, 2037-2066. (b) Corey,
E. J.; Guzma´n-Pe´rez, A. Angew. Chem., Int. Ed. 1998, 37, 388-401. (c)
Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591-4597.
(d) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105-10146. (e)
Ramo´n, D. J.; Yus, M. Curr. Org. Chem. 2004, 8, 149-183. (f) Douglas,
C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363-
5367.
Figure 1. Chiral monodentate phosphines effective at promoting
the catalytic reductive coupling of 1,3-enynes and ketones.
coupling, affording the desired dienol 2 in 68% yield and
>95:5 regioselectivity, albeit in only 17% ee (entry 4).
P-Chiral, ferrocenyl monodentate phosphines are effective
in catalytic asymmetric coupling reactions of alkynes with
both aldehydes2 and imines.5b Accordingly, we evaluated this
family of phosphines in the ketone coupling reaction
described above. Unlike the other achiral ligands evaluated,
(15) Review: Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2004, 43,
284-287.
(16) (a) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538-6539.
(b) Anaya de Parrodi, C.; Walsh, P. J. Synlett 2004, 2417-2420.
(17) For diastereoselective additions of alkenylzirconocenes to ketones
and R-keto esters, respectively, see: (a) Chavez, D. E.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2001, 40, 3667-3670. (b) Wipf, P.; Stephenson,
C. R. J. Org. Lett. 2003, 5, 2449-2452.
3078
Org. Lett., Vol. 7, No. 14, 2005