C O M M U N I C A T I O N S
and intramolecular amine addition (entry 5).9 When o-alkynyl-
benzaldehydes derived from propargylic ethers were subjected to
copper-mediated oxidation, severe side reactions were detected,
likely due to the active propargylic functionality. An alkynyl-imine
from condensation of 5 and butylamine was also investigated in
the copper-mediated oxidation and in initial studies showed low
enantioselectivity.
In conclusion, we have developed a highly enantioselective
approach for the biomimetic synthesis of the azaphilones involving
copper-mediated enantioselective oxidative dearomatization of
o-alkynylbenzaldehydes. Further studies, including asymmetric
oxidative dearomatization of other substrates, are currently in
progress and will be reported in due course.
Scheme 2. Copper-Mediated Enantioselective Oxidative
Dearomatizationa
a Conditions: (a) 2.2 equiv of Cu(CH3CN)4PF6, 2.4 equiv of (-)-
sparteine, DIEA, DMAP, O2, CH2Cl2, -78 to -10 °C; (b) aq. KH2PO4/
K2HPO4 buffer (pH 7.2), CH3CN, room temperature, 98% ee, 84% yield,
two steps.
Table 2. Enantioselective Synthesis of Diverse Azaphilonesa
Acknowledgment. We thank Prof. Olga Gursky (Boston
University School of Medicine) for assistance with CD spectra,
Mr. Gerard Rowe for help with the low temperature UV/vis, and
Profs. Sean J. Elliott and John P. Caradonna (Boston University)
for helpful discussions. We thank Bristol-Myers Squibb for research
support (Unrestricted Grant in Synthetic Organic Chemistry to
J.A.P, Jr.).
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) Kono, K.; Tanaka, M.; Ono, Y.; Hosoya, T.; Ogita, T.; Kohama, T. J.
Antibiot. 2001, 54, 415.
(2) Zhu, J.; Germain, A. R.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2004,
43, 1239.
(3) (a) Chong, R.; King, R. R.; Whalley, W. B. J. Chem. Soc. C 1971, 3566.
(b) Chong, R.; King, R. R.; Whalley, W. B. J. Chem. Soc. C 1971, 3571.
(c) Suzuki, T.; Okada, C.; Arai, K.; Awall, A.; Shimizu, T.; Tanemura,
K.; Horaguchi, T. J. Heterocycl. Chem. 2001, 38, 1409.
(4) Stark, L. M.; Pekari, K.; Sorensen, E. J. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 12064.
a See Supporting Information for further details. b Isolated yield for two
steps. c Isolated yield for three steps.
(5) (a) Karlin, K. D.; Tyeklar, Z. Bioinorganic Chemistry of Copper; Chapman
& Hall: New York, 1993. (b) Stephenson, G. R. AdV. Asymmetric Synth.
1996, 367.
racemic diamine ligands (Table 1). Use of pybox 14 resulted in
11% ee at -78 °C (entry 1). Ligands 15, 16,11 and 17 did not afford
any conversion. We were pleased to discover that the Cu2L2O2
complex generated from Cu(CH3CN)4PF6 and (-)-sparteine (18)9,12
reacted cleanly with pyronoquinone 4 and produced azaphilone 2
in 51% ee (entry 2). Further optimization afforded 2 with 81% ee
employing toluene/CH2Cl2 (1:1) as solvent (entry 6).
(6) Colombo, L.; Scolastico, C.; Lukacs, G.; Dessinges, A.; Aragozzini, F.;
Merendi, C. J. Chem. Soc., Chem. Commun. 1983, 1436.
(7) (a) Robert, A.; Meunier, B. Asymmetric Biomimetic Oxidations. In
Biomimetic Oxidations Catalyzed by Transition Metal Complexes;
Meunier, B., Ed.; Imperial College Press, London, 2000; p 543. (b) Gamez,
P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J. Chem. Soc. ReV. 2001, 30,
376.
(8) Hashmi, A. S. K. Gold Bull. 2004, 37, 51.
(9) See Supporting Information for further details.
Due to the instability of pyronoquinone 4, we investigated
o-alkynylbenzaldehyde 5 as an oxidation substrate. To our delight,
Cu2[(-)-sparteine]2O2-mediated enantioselective oxidative de-
aromatization13 of 5 afforded the corresponding vinylogous acid
19 (Scheme 2).14 However, only up to 60% conversion was obtained
when 1.6 equiv of Cu2[(-)-sparteine]2O2 was employed. Further
optimization studies identified 4-(dimethylamino)pyridine (DMAP)
as an effective additive15 to promote full conversion to vinylogous
acid 19 with 1.1 equiv of Cu2[(-)-sparteine]2O2. After aqueous
KH2PO4/K2HPO4 buffer-mediated cycloisomerization,16 2 was pro-
duced in 98% ee (84% yield, two steps). Use of Cu(CH3CN)4OTf
as a Cu(I) source reduced the ee only slightly (92%). Following
our previously reported procedure,2 we prepared (-)-1,9 which was
confirmed to be R by CD spectroscopy,17 thereby assigning the
absolute configuration of (-)-S-15183a.
The copper-mediated asymmetric oxidation-cycloisomerization
sequence was found to be compatible with o-alkynylbenzaldehydes
20 and 21 containing an enyne and an aromatic functionality, as
well as 22 and 23 bearing a benzyl ether and an ester substituent
to afford the corresponding azaphilones 24-27, respectively (entries
1-4, Table 2). In addition, o-alkynylbenzaldehyde 28 featuring a
terminal NH-Boc substituent was also well-tolerated in this
methodology to produce the desired azaphilone, which was further
converted to tricyclic amino-azaphilone 29 after Boc deprotection
(10) (a) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.;
Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2002, 124, 9332. (b)
Stack, T. D. P. J. Chem. Soc., Dalton Trans. 2003, 1881. Recent
reviews: (c) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV.
2004, 104, 1013. (d) Lewis, E. A.; Tolman, W. B. Chem. ReV. 2004, 104,
1047. (e) Hatcher, L. Q.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9,
669.
(11) Hanessian, S.; Meffre, P.; Girard, M.; Beaudoin, S.; SancBau, J.-Y.;
Bennani, Y. J. Org. Chem. 1993, 58, 1991.
(12) (a) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.-i. J. Org.
Chem. 1999, 64, 2264. (b) Funahashi, Y.; Nakaya, K.; Hirota, S.;
Yamauchi, O. Chem. Lett. 2000, 1172. (c) Zhang, Y.; Yeung, S.-M.; Wu,
H.; Heller, D. P.; Wu, C.; Wulff, W. D. Org. Lett. 2003, 5, 1813. For
palladium-catalyzed oxidative kinetic resolution using (-)-sparteine as
ligand, see: (d) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001,
123, 7725. (e) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem.
Soc. 2002, 124, 8202.
(13) Diastereoselective oxidative dearomatization: (a) Pettus, L. H.; Van De
Water, R. W.; Pettus, T. R. R. Org. Lett. 2001, 3, 905. (b) Mejorado, L.
H.; Hoarau, C.; Pettus, T. R. R. Org. Lett. 2004, 6, 1535.
(14) Malkov, A. V.; Baxendale, I. R.; Bella, M.; Langer, V.; Fawcett, J.; Russell,
D. R.; Mansfield, D. J.; Valko, M.; Kocovsky, P. Organometallics 2001,
20, 673.
(15) (a) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381. (b) Marko, I. E.;
Gautier, A.; Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch,
C. J. Angew. Chem., Int. Ed. 2004, 43, 1588.
(16) Base-mediated 6-endo-dig cycloisomerization of ynones: Alvaro, M.;
Garcia, H.; Iborra, S.; Miranda, M. A.; Primo, J. Tetrahedron 1987, 43,
143.
(17) (a) Vleggaar, R.; Steyn, P. S.; Nagel, D. W. J. Chem. Soc., Perkin Trans.
1 1974, 45. (b) Steyn, P. S.; Vleggaar, R. J. Chem. Soc., Perkin Trans. 1
1976, 204.
JA052049G
9
J. AM. CHEM. SOC. VOL. 127, NO. 26, 2005 9343