L. Lunazzi et al. / Tetrahedron 61 (2005) 6782–6790
6789
Mislow, K. J. Am. Chem. Soc. 1973, 95, 1535–1547. (e)
Finocchiaro, P.; Gust, D.; Mislow, K. J. Am. Chem. Soc. 1974,
96, 3198–3205. (f) Finocchiaro, P.; Gust, D.; Mislow, K.
J. Am. Chem. Soc. 1974, 96, 3205–3213.
1990, 112, 2915–2921. (f) Anderson, J. E.; Tocher, D. A.;
Casarini, D.; Lunazzi, L. J. Org. Chem. 1991, 56, 1731–1739.
(g) Borghi, R.; Lunazzi, L.; Placucci, G.; Cerioni, G.; Foresti,
E.; Plumitallo, A. J. Org. Chem. 1997, 62, 4924–4927.
11. A situation analogous to that of 1 at K178 8C is, for instance,
that of (Me2CH)2PPh at ambient temperature, where the
methyl groups are diastereotopic whereas the methine
hydrogens are equivalent (enantiotopic) because the molecular
plane of symmetry is not coincident with the local plane of
symmetry of the isopropyl substituents, see: McFarlane, W.
Chem. Commun. 1968, 229–230.
5. (a) Glaser, R. In Acyclic Organonitrogen Stereodynamics;
Lambert, J. B., Takeuchi, J., Eds.; VCH: New York, 1992. (b)
Rappoport, Z.; Biali, S. E. Acc. Chem. Res. 1997, 30, 307–314.
(c) Nugiel, D. A.; Biali, S. E.; Rappoport, Z. J. Am. Chem. Soc.
1984, 106, 3357–3359. (d) Nugiel, D. A.; Biali, S. E.;
Rappoport, Z. J. Am. Chem. Soc. 1989, 111, 8181–8191. (e)
Biali, S. E.; Nugiel, D. A.; Rappoport, Z. J. Am. Chem. Soc.
1989, 111, 846–852. (f) Biali, S. E.; Rappoport, Z. J. Am.
Chem. Soc. 1984, 106, 477–496. (g) Biali, S. E.; Rappoport,
Z.; Mannschreck, A.; Pustet, N. Angew. Chem., Int. Ed. Engl.
1989, 28, 199–201. (h) Lam, W. Y.; Martin, J. C. J. Org.
Chem. 1981, 46, 4458–4462. (i) Clayden, J.; Pink, J. H. Angew.
Chem., Int. Ed. 1998, 37, 1937–1939. (j) Bragg, A. A.;
Clayden J. Org. Lett. 2000, 2, 3351–3354. (k) Sedo, J.;
Ventosa, N.; Molins, M. A.; Pons, M.; Rovira, C.; Veciana J.
Org. Chem. 2001, 66, 1579–1589.
12. Lunazzi, L.; Mazzanti, A.; Minzoni, M. J. Org. Chem. 2005,
70, 456–462.
13. The same type of interconversion might occur through the
transition state TS-B of Scheme 2, but calculations show that
the corresponding energy (Table 1) is much higher than that of
TS-A, so that this rotation process can be considered as not
allowed. For this reason this pathway has not been indicated in
Figure 2 and only the positions corresponding to TS-B/TS-B0
(brown crosses) are displayed.
6. (a) Mislow, K.; Raban, M. Top. Stereochem. 1967, 1, 1–38. (b)
Jennings, W. B. Chem. Rev. 1975, 75, 307–322. (c) Eliel, E. L.
J. Chem. Ed. 1980, 57, 52–55.
14. Above K174 8C the situation of 1 becomes analogous, for
instance, to that of (Me2CH)2CO, where the methyl groups are
enantiotopic and exhibit, therefore, a single line in the 13C
NMR spectrum because the molecular plane of symmetry is
coincident with the local plane of symmetry of the isopropyl
substituents.
7. MMFF-94 force field as implemented in the computer
package PC Model v 7.5, Serena Software, Bloomington,
IN.
8. These conformers can be also classified on the basis of the
value and of the sign of dihedral angles C2–C1–S–C10 (q) and
C20–C10S–C1 (f) indicated in Scheme 1. In the case of the
sulfide 1 the values of these angles (MM computed) are: qZC
708, fZK1308 for conformer C1 and qZK1308, fZC708
for its identical (homomeric) form: in Figure 2 they are
identified by hollow diamonds. The angles qZC1308, fZK
708 correspond to the enantiomer C1 and qZK708, fZC1308
to its homomeric form: in Figure 2 they are identified by full
diamonds. The angles for C2-syn, identified by a hollow circle
in Figure 2, are qZfZC1158 (the enantiomer C2-syn has qZ
fZK1158 and is identified by a full circle). The angles for
C2-anti, identified by a hollow triangle in Figure 2, are qZ
fZC658 (the enantiomer C2-anti has qZfZK658 and is
identified by a full triangle).
9. This motion cannot be due to a slow Ph–Pri rotation since the
corresponding barrier is too low to yield separate signals at any
accessible temperature in a liquid phase NMR experiment:
examples of such an occurrence, in fact, have never been
reported. The observed anisochronicity of the methyl signals
must be therefore a consequence of the molecular dissymmetry
(see, for instance: Kessler, H.; Rieker, A.; Rundel, W. Chem.
Commun. 1968, 475–476.
15. It cannot be excluded, in principle, that the chemical shift
difference of the methine isopropyl carbons of sulfide 1 might
be smaller than the line width (about 110 Hz) at K178 8C, so
that the observed spectrum might actually correspond to that of
the static asymmetric C1 conformer. This hypothesis would
also require that four lines be observed for the methyl groups:
again the corresponding shift difference should be assumed to
be lower than 110 Hz in order to explain why only two methyl
signals are resolved. Also the aromatic lines should be split in
this case but, unfortunately, they are overlapped by the intense
signals of the solvents needed to reach such extremely low
temperatures and cannot be used to check whether the
aromatic rings are different, as expected for the static C1
conformer. If all these assumptions are accepted, the two
mentioned interconversion processes would be, in practice,
undistinguishable: in other words, the interconversion through
the TS-C and the TS-A transition states should be considered
as having essentially the same barrier. In view of the similarity
between these two computed barriers (2.2 and 2.5 kcal molK1
,
respectively) we feel that this alternative explanation cannot
be unambiguously rejected.
16. Grilli, S.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2001, 66,
5853–5858.
10. As often observed in conformational processes, the DGs
values are essentially independent of temperature (indicating
negligible DSs values) since the corresponding variations lie
17. Jog, P. V.; Brown, R. E.; Bates, D. K. J. Org. Chem. 2003, 68,
8240–8243.
18. Casarini, D.; Lunazzi, L.; Mazzanti, A.; Mercandelli, P.;
Sironi, A. J. Org. Chem. 2004, 69, 3574–3577.
within the experimental error (about G0.15 kcal molK1
)
which is a consequence of the uncertainties on the measure-
ment of the temperature, of the shift separation and of the T2
values, see: (a) Hoogosian, S.; Bushweller, C. H.; Anderson,
W. G.; Kigsley, G. J. Phys. Chem. 1976, 80, 643. (b) Lunazzi,
L.; Cerioni, G.; Ingold, K. U. J. Am. Chem. Soc. 1976, 98,
7484–7488. (c) Bernardi, F.; Lunazzi, L.; Zanirato, P.; Cerioni,
G. Tetrahedron 1977, 33, 1337–1343. (d) Lunazzi, L.;
Magagnoli, C.; Guerra, M.; Macciantelli, D. Tetrahedron
Lett. 1979, 3031–3032. (e) Cremonini, M. A.; Lunazzi, L.;
Placucci, G.; Okazaki, R.; Yamamoto, G. J. Am. Chem. Soc.
19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven,
Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;
Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.;
Knox, X.; Li, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala,