Novel DAMNIs as HIV NNRTIs
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 13 4387
P. Synthesis of pyrryl aryl sulfones targeted at the HIV-1 reverse
transcriptase. Arch. Pharm. (Weinheim) 1995, 328, 223-229. (c)
Silvestri, R.; Pagnozzi, E.; Artico, M.; Stefancich, G.; Massa, S.;
La Colla, P. Synthesis of 9H-pyrrolo[2,1-b][1,3,6]benzothiadiazocin-
10(11H)-one 4,4-dioxide, potential anti-HIV agent. J. Heterocycl.
Chem. 1995, 32, 683-685. (d) Artico, M.; Silvestri, R.; Massa,
S.; Loi, A. G.; Corrias, S.; Piras, G.; La Colla, P. 2-Sulfonyl-4-
chloroanilino moiety: a potent pharmacophore for the anti-
human immunodeficiency virus type 1 activity of pyrrolyl aryl
sulfones. J. Med. Chem. 1996, 39, 522-530. (e) Artico, M.;
Silvestri, R.; Pagnozzi, E.; Stefancich, G.; Massa, S.; Loi, A. G.;
Scano, P.; Corrias, S.; Spiga, M. G.; P.; La Colla, P. Pyrrolo[1,2-
b][1,2,5]benzothiadiazepines (PBTDs): a novel class of HIV-1-
specific non-nucleoside reverse transcriptase inhibitors. Bioorg.,
Med. Chem. 1996, 4, 837-850. (f) Artico, M.; Silvestri, R.;
Pagnozzi, E.; Stefancich, G.; Massa, S.; La Colla, P. Synthesis
and anti-HIV activity of 10,11-dihydropyrrolo[1,2-b][1,2,5]benzo-
thiadiazepine-11-acetic acid 5,5-dioxide derivatives and related
compounds. Farmaco 1996, 51, 425-430. (g) Silvestri, R.; Artico,
M.; Massa, S.; Stefancich, G.; Congeddu, E.; Putzolu, M.; La
Colla, P. Sulfone derivatives with anti-HIV activity. Farmaco
1997, 52, 323-329. (h) Silvestri, R.; Artico, M.; Bruno, B.; Massa,
S.; Novellino, E.; Greco, G.; Marongiu, M. E.; Pani, A.; De Montis,
A.; La Colla, P. Synthesis and biological evaluation of 5H-indolo-
[3,2-b][1,5]benzothiazepine derivatives, designed as conforma-
tionally constrained analogues of the human immunodeficiency
virus type 1 reverse transcriptase inhibitor L-737, 126. Antiviral
Chem., Chemoth. 1998, 9, 139-148. (i) Artico, M.; Silvestri, R.;
Pagnozzi, E.; Bruno, B.; Novellino, E.; Greco, G.; Massa, S.;
Ettorre, A.; Loi, A. G.; Scintu, F.; La Colla. P. Structure-based
design, synthesis and biological evaluation of novel pyrrolyl aryl
sulfones (PASs), HIV-1 non-nucleoside reverse transcriptase
inhibitors active at nanomolar concentrations. J. Med. Chem.
2000, 43, 1886-1891. (j) Silvestri, R.; De Martino, G.; Artico,
M.; La Regina G.; Ragno, R.; Loddo, R.; La Colla, P.; Marongiu,
M. E.; La Colla, M.; Pani. A. Anti-HIV-1 NNRT Agents: Acyl-
amino Pyrryl Aryl Sulfones (APASs) as Truncated Analogues
of Tricyclic PBTDs. Med. Chem. Res. 2002, 11, 195-218. (k)
Silvestri, R.; De Martino, G.; La Regina, G.; Artico, M.; Massa,
S.; Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; La Colla, P.
Novel Indolyl Aryl Sulfones Active against HIV-1 Carrying
NNRTI Resistance Mutations: Synthesis and SAR Studies. J.
Med. Chem. 2003, 46, 2482-2493.
Nucleic Acid Substrates. The homopolymer poly(rA)
(Pharmacia) was mixed at weight ratios in nucleotides of 10:
1, to the oligomer oligo(dT)12-18 (Pharmacia) in 20 mM Tris-
HCl (pH 8.0), containing 20 mM KCl and 1 mM EDTA, heated
at 65 °C for 5 min and then slowly cooled at room temperature.
Expression and Purification of Recombinant HIV-1
RT Forms. The coexpression vectors pUC12N/p66(His)/
p51with the wild-type or the mutant forms of HIV-1 RT p66
(Boyer et al., 1994a) were kindly provided by Dr. S. H. Hughes
(NCI-Frederick Cancer Research and Development Center).
Proteins were expressed in E. coli and purified as described.35
HIV-1 RT RNA-Dependent DNA Polymerase Activity
Assay. RNA-dependent DNA polymerase activity was assayed
as follows: a final volume of 25 µL contained reaction buffer
(50 mM Tris-HCl pH 7.5, 1 mM DTT, 0.2 mg/mL BSA, 4%
glycerol), 10 mM MgCl2, 0.5 µg of poly(rA)/oligo(dT)10:1 (0.3 µM
3′-OH ends), 10 µM [3H]-dTTP (1Ci/mmol) and 2-4 nM RT.
Reactions were incubated at 37 °C for the indicated time.
Aliquots (20 µL) were then spotted on glass fiber filters GF/C
which were immediately immersed in 5% ice-cold TCA. Filters
were washed twice in 5% ice-cold TCA and once in ethanol for
5 min, dried, and acid-precipitable radioactivity was quanti-
tated by scintillation counting.
Inhibition Assays. Reactions were performed under the
conditions described for the HIV-1 RT RNA-dependent DNA
polymerase activity assay. Incorporation of radioactive dTTP
into poly(rA)/oligo(dT) at different substrate (nucleic acid or
dTTP) concentrations was monitored in the presence of
increasing fixed amounts of inhibitor. Data were then plotted
according to Lineweaver-Burke and Dixon. For Ki determi-
nation, an interval of inhibitor concentrations between 0.2 Ki
and 5 Ki was used.
Acknowledgment. We thank the Universita` degli
Studi di Roma “La Sapienza”, Finanziamento progetti
di ricerca di Ateneo (ex quota 60%) - Anno 2002. We
also acknowledge the finacial support of the Italian
MIUR (cofin 2000) and the Italian Ministero della
Salute - Istituto Superiore di Sanita` - Fourth National
Research Program on AIDS (grants no. 40C.8 and no.
40D.46).
(11) (a) Silvestri, R.; Artico, M.; Massa, S.; Marceddu, T.; De Montis,
F.; La Colla, P. 1-[2-(Diphenylmethoxy)ethyl]-2-methyl-5-nitro-
imidazole: a potent lead for the design of novel NNRTIs. Bioorg.,
Med. Chem. Lett. 2000, 10, 253-256. (b) Silvestri, R.; Artico,
M.; De Martino, G.; Ragno, R.; Massa, S.; Loddo, R.; Murgioni,
C.; Loi, A. G.; Pani, A.; La Colla, P.. Synthesis, biological
evaluation and binding mode of novel 1-[2-(diarylmethoxy)ethyl]-
2-methyl-5-nitroimidazoles targeted at the HIV-1 reverse tran-
scriptase. J. Med. Chem. 2002, 45, 1567-1576.
Supporting Information Available: Spectroscopic data
of new compounds 7-38, 40-44, 52, 54, 57, 60, 62, 63, and
65 and elemental analyses data of 7-38 and 40-44 are
(12) (a) Scha¨fer, W.; Friebe, W.-G.; Leinert, H.; Mertens, H.; Poll,
T.; von del Saal, W.; Zilch, H.; Nuber, B.; Zigler, M. L. Non
nucleoside inhibitors of HIV-1 reverse transcriptase: molecular
modeling and X-ray structure investigations. J. Med. Chem.
1993, 36, 726-732. (b) Scha¨fer, W. Rational design of inhibitors
of HIV-1 reverse transcriptase. In Methods and priciples in
medicinal chemistry. Structure-based ligand design; Guberbator,
K., Bo¨hm, H.-J., Eds.; Wiley-VCH: Weinheim, Germany, 1998.
(13) Stephens, C. E.; Felder, T. M.; Sowell, J. W., Sr.; Andrei, G.;
Balzarini, J.; Snoeck, R.; De Clercq, E. Synthesis and antiviral/
antitumor evaluation of 2-amino- and 2-carboxamide-3-aryl-
sulfonylthiophenes and related compounds as a new class of
diarylsulfones. Bioorg., Med. Chem. 2001, 9, 1123-1132.
(14) (a) Uckun, F. M.; Pendergrass, S.; Mahere, D.; Zhu, D.; Tuel-
Ahlgren, L.; Mao, C.; Ventkatachalam, T. K. N′-[2-(2-thiophene)-
ethyl]-N-[2-(5-bromopyridyl)]thiourea as a potent inhibitor of
NNI-resitant and multidrug-resistant human immunodeficiency
virus-1. Bioorg., Med. Chem. Lett. 1999, 9, 3411-3416. (b)
Venkatachalam, T. K.; Sudbeck, E. A.; Mao, C.; Uckun, F. M.
Anti-HIV activity of aromatic and heterocyclic thazolyl thiourea
compounds. Bioorg., Med. Chem. Lett. 2001, 11, 523-528.
(15) Literature related to methanones. (a) Curran, D. P.; Nakamura,
H.; Ryu, I.; Matsubara, H. Fluorous triphase and other multi-
phase systems. U.S. Patent 877,944, 2003. (b) Wittenberg, R.;
Srogl, J.; Egi, M.; Liebeskind, L. S. Ketone synthesis under
neutral conditions. Cu(I) diphenylphosphinate-mediated, pal-
ladium-catalyzed coupling of thiol esters and organostannanes.
Org. Lett. 2003, 5, 3033-3035. (c) Keumi, T.; Y.; Kiichiro; S.,
Masakazu; K., H. 2-(Trifluoromethylsulfonyloxy)pyridine as a
reagent for ketone synthesis from carboxylic acids and aromatic
hydrocarbons. Bull. Chem. Soc. Jpn. 1988, 61, 455-459. (d)
Andrieu, C.; Mollier, Y.; Lozac′h, N. Heterocyclic sulfur com-
pounds. XXXII. 2-Thienyl ketones and thioketones. Bull. Soc.
Chim. Fr. 1969, 3, 827-830. (e) Haddach, M.; McCarthy, J. R.
A new method for the synthesis of ketones: the palladium-
catalyzed cross-coupling of acid chlorides with arylboronic acids.
References
(1) WHO/UNAIDS. AIDS Epidemic Update: December 2003.
(2) Williams, I. G. Enfuvirtide (Fuzeon): the first fusion inhibitor.
Int. J. Clin. Pract. 2003, 57, 890-897.
(3) Vandamme, A.-M.; Van Vaerenbergh, K.; De Clercq, E. Anti-
human immunodeficiency virus drug combination strategies.
Antiviral Chem., Chemother. 1998, 9, 187-203.
(4) Spence, R. A.; Kati, W. M.; Anderson, K. S.; Johnson, K. A.
Mechanism of inhibition of HIV-1 reverse transcriptase by non-
nucleoside inhibitors. Science 1995, 267, 988-993.
(5) Artico, M. Non-nucleoside anti-HIV-1 reverse transcriptase
inhibitors (NNRTIs): a chemical survey from lead compounds
to selected drugs for clinical trials. Farmaco 1996, 51, 305-331.
(6) Buckheit, R. W. Non-nucleoside reverse transcriptase inhibi-
tors: perspectives on novel therapeutic compounds and strate-
gies for the treatment of HIV infection. Exp. Op. Invest. Drugs
2001, 10, 1423-42.
(7) Condra, J. H.; Miller, M. D.; Hazuda, D. J.; Emini, E. A. Potential
new therapies for the treatment of HIV-1 infection. Annu. Rev.
Med. 2002, 53, 541-555.
(8) Young, S. D. Recent advances in the chemotherapy of HIV. Annu.
Rep. Med. Chem. 2003, 38, 173-182.
(9) Flynn, D. L. Presented at the 226th American Chemical Society
National Meeting, New York, Sept 7-11, 2003; Abstracts 127-
130.
(10) (a) Artico, M.; Stefancich, G.; Silvestri, R.; Massa, S.; Pagnozzi,
E.; Loi, A. G.; Musu, D.; Doa, M.; Scano, P.; La Colla, P.
Pyrrolobenzothiazepines: a new class of non-nucleoside HIV-1
reverse transcriptase inhibitors. Med. Chem. Res. 1994, 4, 283-
290. (b) Artico, M.; Silvestri, R.; Stefancich, G.; Massa, S.;
Pagnozzi, E.; Musu, D.; Scintu, F.; Pinna, E.; Tinti, E.; La Colla,