junction with ESI-MS/MS and MALDI-MS/MS has proved to be
useful identifying sites of ubiquitination.18,19 Our group has used
N-terminal sulfonation with infrared multiphoton dissociation
(IRMPD) to improve de novo sequencing of peptides by eliminat-
ing the low mass cutoff inherent to ion traps.11 Recently, we have
synthesized a new N-terminal reagent with a highly IR-absorbing
phosphonite group that increased the dissociation efficiencies and
sequence information obtained upon IRMPD.35
to be particularly promising for characterization of post-transla-
tional modifications (PTMs)38-45 and for increasing peptide
sequence coverage.36,46 Both methods involve the reaction of
multiply charged cations with either low-energy electrons (ECD)
or radical anions (ETD), producing complementary c- and z-type
backbone cleavages that retain labile PTMs such as phosphory-
lation. For peptides of lower charge, however, these electron-based
methods yield charge-reduced radicals from the precursor as the
most abundant products with low yields of c and z products.36,47
Recently, both the Coon and McLuckey groups have implemented
supplemental collisional activation (i.e., low-energy CID) of charge-
reduced peptide radicals after the electron transfer reaction
(ETcaD), thus affording significantly improved peptide sequence
coverage.47-49 Both ETD and ECD are promising new alternatives
to CID for sequencing peptides, but the resulting spectra remain
rather complex with both N-terminus and C-terminus product ions
that can complicate de novo interpretation.
In this study, doubly protonated peptides derivatized at the
N-terminus via reactions with 4-sulfophenyl isothiocyanate (SPITC)
or 4-(chlorosulfonyl)phenyl isocyanate (SPC) (Supplemental Fig-
ure 1) were converted to charged-reduced radical species after
gas-phase electron transfer (ET) reactions with fluoranthene
radicals. The resulting singly charged radical species were then
subjected to subsequent collisional activation (ETcaD), which
produced an enhanced series of z ions void of N-terminal ions.
This spectral simplification strategy was performed using a linear
ion trap on a liquid chromatographic time scale, and improved de
novo sequencing was realized for a variety of multiply charged
peptides including phosphorylated species.
One major drawback to the use of N-terminal derivatization
strategies is that the simplification of the fragmentation patterns
of peptides is substantially impaired when multiply charged
precursor ions are analyzed.14,15,18,20 For example, when doubly
charged SPITC-modified peptides are dissociated, the N-terminal
b ions are no longer neutralized due to the presence of the extra
mobile proton, and the utility of the derivatization procedure is
greatly reduced.14 This is particularly problematic for LC-ESI-
MS applications in which tryptic peptides are typically multiply
protonated (i.e., charge states of 2+ and greater).36 Lee et al.
described a method to simplify the fragmentation patterns of these
multiply charged ions by using isotopically labeled SPITC, but
extra derivatization steps and more elaborate spectral interpreta-
tion were needed.15 Our group has attached UV chromophores
to the N-terminus of peptides, and the modified peptides almost
exclusively produced y ions upon ultraviolet photodissociation
(UVPD), a striking selectivity attributed to the secondary dis-
sociation and rapid annihilation of the UV chromophore-containing
b ions.34 However, because of the slow repetition rate of the laser
(10 Hz) and the requirement for multiple laser pulses used in this
application, analysis on a chromatographic time scale could not
be achieved.
EXPERIMENTAL SECTION
In recent years, other ion activation methods have been
developed as alternatives to collision induced dissociation (CID,
also known as CAD). Electron-based dissociation techniques such
as electron capture dissociation (ECD)37 in FTICR instruments
and electron transfer dissociation (ETD)38 in ion traps have shown
Materials. Myoglobin and cytochrome c from equine heart
and all reagents were purchased from Sigma-Aldrich (St. Louis,
MO). The peptides KRPPGFSPFR and ASHLGLAR were obtained
from BACHEM (King of Prussia, PA), the phosphorylated peptides
KRpTIRR and TRDIYETDYpYRK from AnaSpec (San Jose, CA),
and immobilized TPCK-treated trypsin beads from Pierce Bio-
technology, Inc. (Rockford, IL). All solvents were purchased from
Fisher Scientific (Fairlawn, NJ).
(22) Wang, D.; Xu, W.; McGrath, S. C.; Patterson, C.; Neckers, L.; Cotter, R. J.
J. Proteome Res. 2005, 4, 1554–1560
.
(23) Pashkova, A.; Chen, H.-S.; Rejtar, T.; Zang, X.; Giese, R.; Andreev, V.;
Moskovets, E.; Karger, B. L. Anal. Chem. 2005, 77, 2085–2096.
(24) Oehlers, L. P.; Perez, A. N.; Walter, R. B. Rapid Commun. Mass Spectrom.
2005, 19, 752–758.
(47) Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.;
Coon, J. J. Anal. Chem. 2007, 79, 477–485
(37) Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998,
120, 3265–3266
(38) Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533
(39) Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Anal. Chem. 1999, 71,
4431–4436
(40) Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A.
Rapid Commun. Mass Spectrom. 2000, 14, 1793–1800
(41) Hakansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall,
A. G.; Nilsson, C. L. Anal. Chem. 2001, 73, 4530–4536
(42) Kleinnijenhuis, A. J.; Kjeldsen, F.; Kallipolitis, B.; Haselmann, K. F.; Jensen,
O. N. Anal. Chem. 2007, 79, 7450–7456
.
(25) Guillaume, E.; Panchaud, A.; Affolter, M.; Desvergnes, V.; Kussmann, M.
Proteomics 2006, 6, 2338–2349.
(26) Bauer, M. D.; Sun, Y.; Keough, T.; Lacey, M. P. Rapid Commun. Mass
Spectrom. 2000, 14, 924–929.
(27) Bao, J.; Ai, H.; Fu, H.; Jiang, Y.; Zhao, Y.; Huang, C. J. Mass Spectrom. 2005,
40, 772–776.
(28) Wang, F.; Fu, H.; Jiang, Y.; Zhao, Y. J. Am. Soc. Mass Spectrom. 2006, 17,
995–999.
(29) Beardsley, R. L.; Reilly, J. P. J. Am. Soc. Mass Spectrom. 2004, 15, 158–
167.
(30) Beardsley, R. L.; Sharon, L. A.; Reilly, J. P. Anal. Chem. 2005, 77, 6300–
6309.
(31) Brancia, F. L.; Butt, A.; Beynon, R. J.; Hubbard, S. J.; Gaskell, S. J.; Oliver,
S. G. Electrophoresis 2001, 22, 552–559.
.
.
.
.
.
.
(43) Srikanth, R.; Wilson, J.; Bridgewater, J. D.; Numbers, J. R.; Lim, J.; Olbris,
M. R.; Kettani, A.; Vachet, R. W. J. Am. Soc. Mass Spectrom. 2007, 18,
(32) Summerfield, S. G.; Bolgar, M. S.; Gaskell, S. J. J. Mass Spectrom. 1997,
32, 225–231.
1499–1506
(44) Zabrouskov, V.; Ge, Y.; Schwartz, J.; Walker, J. W. Mol. Cell. Proteomics
2008, 7, 1838–1849
(45) Sweet, S. M. M.; Mardakheh, F. K.; Ryan, K. J. P.; Langton, A. J.; Heath,
J. K.; Cooper, H. J. Anal. Chem. 2008, 80, 6650–6657
(46) Molina, H.; Matthiesen, R.; Kandasamy, K.; Pandey, A. Anal. Chem. 2008,
80, 4825–4835
(48) Han, H.; Xia, Y.; McLuckey, S. A. Rapid Commun. Mass Spectrom. 2007,
21, 1567–1573
(49) Xia, Y.; Han, H.; McLuckey, S. A. Anal. Chem. 2008, 80, 1111–1117
.
(33) Yamaguchi, M.; Oka, M.; Nishida, K.; Ishida, M.; Hamazaki, A.; Kuyama,
H.; Ando, E.; Okamura, T.-a.; Ueyama, N.; Norioka, S.; Nishimura, O.;
Tsunasawa, S.; Nakazawa, T. Anal. Chem. 2006, 78, 7861–7869.
(34) Wilson, J. J.; Brodbelt, J. S. Anal. Chem. 2007, 79, 7883–7892.
(35) Vasicek, L. A.; Wison, J. J.; Brodbelt, J. S. J. Am. Soc. Mass Spectrom., 2009,
20, 377-384.
.
.
.
(36) Kjeldsen, F.; Giessing, A. M. B.; Ingrell, C. R.; Jensen, O. N. Anal. Chem.
.
2007, 79, 9243–9252
.
.
3646 Analytical Chemistry, Vol. 81, No. 9, May 1, 2009