ORGANIC
LETTERS
2005
Vol. 7, No. 14
2937-2940
anti-1,2-Diols via Ni-Catalyzed Reductive
Coupling of Alkynes and
r
-Oxyaldehydes
Torsak Luanphaisarnnont, Chudi O. Ndubaku, and Timothy F. Jamison*
Department of Chemistry, Massachusetts Institute of Technology,
77 Massachusetts AVe., Cambridge, Massachusetts 02139
Received April 21, 2005
ABSTRACT
Ni-catalyzed reductive coupling of aryl alkynes (1) and enantiomerically enriched
r-oxyaldehydes (2) afford differentiated anti-1,2-diols (3) with
high diastereoselectivity and regioselectivity, despite the fact that the methoxymethyl (MOM) and para-methoxybenzyl (PMB) protective groups
typically favor syn-1,2-diol formation in carbonyl addition reactions of this family of aldehydes.
Enantiomerically pure 1,2-diols are important and commonly
occurring functional group patterns in natural products such
as carbohydrates and polyketides and in chiral ligands used
in asymmetric catalysis. Consequently, much effort has been
invested in the development of stereoselective methods for
1,2-diol synthesis. A very powerful one for preparing syn-
1,2-diols is the Sharpless asymmetric dihydroxylation of
trans-disubstituted olefins.1 However, the diastereomeric anti-
1,2-diols are not as easily accessed using this transforma-
tion, because the corresponding dihydroxylations of cis-
disubstituted olefins typically proceed with diminished
enantioselectivity.1c
continues to be actively investigated. Recently, MacMillan
and List reported catalytic asymmetric aldol reactions that
afford the anti-1,2-diol architecture.3 Aldolases,4 catalytic
antibodies,5 and a heteropolymetallic catalyst6 also have been
used to favor anti addition in related reactions.
A contrasting approach to the synthesis of 1,2-diols
involves nucleophilic addition to aldehydes bearing protected
hydroxyl groups adjacent to the carbonyl.7 Cram’s rule, after
(3) (a) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386-7387. (b)
Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew.
Chem., Int. Ed. 2004, 43, 2152-2154. (c) Northrup, A. B.; MacMillan, D.
W. C. Science 2004, 305, 1752-1755.
(4) (a) Bednarski, M. D.; Simon, E. S.; Bishofberger, N.; Fessner, W.-
D.; Kim, M.-J.; Lees, W.; Saito, T.; Waldmann, H.; Whitesides, G. M. J.
Am. Chem. Soc. 1989, 111, 627-635. (b) Fessner, W.-D.; Sinerius, G.;
Schneider, A.; Dreyer, M.; Schulz, G. E.; Badia, J.; Aguilar, J. Angew.
Chem., Int. Ed. Engl. 1991, 30, 555-558.
(5) (a) List, B.; Shabat, D.; Barbas, C. F., III; Lerner, R. A. Chem.s
Eur. J. 1998, 4, 881-885. (b) Hoffmann, T.; Zhong, G.; List, B.; Shabat,
D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.; Barbas, C. F., III J. Am.
Chem. Soc. 1998, 120, 2768-2779.
(6) Yoshikawa, N.; Suzuki, T.; Shibasaki, M. J. Org. Chem. 2002, 67,
2556-2565.
Auxiliary-based, anti-selective glycolate aldol addition
reactions have been developed to address this limitation.2
Nevertheless, these methods are much less common than
those for analogous syn-selective addition, and this area
(1) (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schro¨der, G.;
Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968-1970. (b) Kolb, H.
C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994, 94, 2483-
2547. (c) Johnson, R. A., Sharpless, K. B. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; VCH: New York, 2000; pp 357-398.
(2) (a) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1984, 753-756. (b)
Evans, D. A.; Gage, J. R.; Leighton, J. L.; Kim, A. S. J. Org. Chem. 1992,
57, 1961-1963. (c) Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5,
591-594.
(7) Reviews: (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23,
556-569. (b) Reetz, M. T. Acc. Chem. Res. 1993, 26, 462-468. (c) Eliel,
E. L. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York,
1983; Vol. 2, Part A; pp 125-155.
10.1021/ol050881k CCC: $30.25
© 2005 American Chemical Society
Published on Web 06/04/2005