Diaminopyrimidine Dihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 13 4431
(2) Rosowsky, A.; Forsch, R. A.; Queener, S. F. Inhibition of
Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium
avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-
(ω-carboxyalkoxy)benzyl]pyrimidines marked improvement in
potency relative to trimethoprim and species selectivity relative
to piritrexim. J. Med. Chem. 2002, 45, 233-241.
(3) Rosowsky, A.; Forsch, R. A.; Queener, S. F. Further studies on
2,4-diamino-5- (2′,5′-disubstituted benzyl)pyrimidines as potent
and selective inhibitors of dihydrofolate reductases from three
major opportunistic pathogens of AIDS. J. Med. Chem. 2003,
46, 1726-1736.
(15) Hill, J. A.; Wisowaty, J. C.; Darnofall, M. E. Synthesis of carbon-
14 labeled piritrexim - a potential anticancer agent. J. Labelled
Compd. Radiopharm. 1993, 33, 1119-1130.
(16) Chan, D. C. M.; Rosowsky, A. Synthesis of the lipophilic
antifolate piritrexim via a palladium(0)-catalyzed cross-coupling
reaction. J. Org. Chem. 2005, 70 (4), 1364-1368.
(17) Sonogashira, K.; Tohda, Y.; Hagihara, B. A convenient synthesis
of acetylenes. Catalytic substitutions of acetylenic hydrogen with
bromo alkenes, iodo arenes, and bromopyridines. Tetrahedron
Lett. 1975, 16, 4467-4470.
(18) For the synthesis of brodimoprim analogues with ω-carboxy-
alkoxy side chains (as opposed to a ω-carboxy-1-alkynyl) side
chain from this key intermediate, see: Kompis, I.; Then, R. L.
Rationally designed brodimoprim analogues: synthesis and
biological activities. Eur. J. Med. Chem. 1984, 19, 529-534.
(19) Rosowsky, A.; Cody, V.; Galitsky, N.; Fu, H.; Papoulis, A. T.;
Queener, S. F. Structure-based design of selective inhibitors of
dihydrofolate reductase: synthesis and antiparasitic activity of
2,4-diaminopteridine analogues with a bridged diarylamine side
chain. J. Med. Chem. 1999, 42, 4853-4860.
(20) Gangjee, A.; Adair, O.; Queener, S. F. Pneumocystis carinii and
Toxoplasma gondii dihydrofolate reductase inhibitors and an-
titumor agents: synthesis and biological activities of 2,4-
diamino-5-methyl-6-[(monosubstituted anilino)methyl]pyrido-
[2,3-d]pyrimidines. J. Med. Chem. 1999, 42, 2447-2455.
(21) Wright, J. E.; Vaidya, C. M.; Chen, Y.-N.; Rosowsky, A. Efficient
utilization of the reduced folate carrier in CCRF-CEM human
leukemic lymphoblasts by the potent antifolate NR-(4-amino-4-
deoxypteroyl)-Nδ-hemiphthaloyl-L-ornithine (PT523) and its B-
ring analogues. Biochem. Pharmacol. 2000, 60, 41-46.
(22) Champness, J. N.; Achari, A.; Ballantine, S. P.; Bryant, P. K.;
Delves, C. J.; Stammers, D. K. The structure of Pneumocystis
carinii dihydrofolate reductase to 1.9 Å resolution. Structure
1994, 2, 915-924.
(4) Forsch, R. A.; Queener, S. F.; Rosowsky, A. Preliminary in vitro
studies on two potent, water-soluble trimethoprim analogues
with exceptional species selectivity against dihydrofolate reduc-
tase from Pneumocystis carinii and Mycobacterium avium.
Bioorg. Med. Chem. Lett. 2004, 14, 1811-1815, 2693.
(5) Medina, I.; Mills, J.; Leoung, G.; Hopewell, P. C.; Lee, B.; Modin,
G.; Benowitz, N.; Wofsy, C. B. Oral therapy for Pneumocystis
carinii pneumonia in the acquired immunodeficiency syndrome.
A
controlled trial of trimethoprim-sulfamethoxazole versus
trimethoprim-dapsone. N. Engl. J. Med. 1990, 323, 776-782.
(6) Roudier, C.; Caumes, E.; Rogeaux, O.; Bricaire, F.; Gentilini, M.
Adverse cutaneous reactions to trimethoprim-sulfamethoxazole
in patients with acquired immunodeficiency syndrome and
Pneumocystis carinii pneumonia. Arch. Dermatol. 1994, 30,
1383-1386.
(7) Falloon, J.; Allegra, C. J.; Kovacs, J.; O’Neill, D.; Ogata-Arakaki,
D.; Feuerstein, I.; Polis, M.; Davey, R.; Lane, H. C.; LaFon, S.;
Rogers, M.; Zunich, K.; Turlo, J.; Tuazon, C.; Parenti, D.; Simon,
G.; Masur, H. Piritrexim with leucovorin for the treatment of
pneumocystis pneumonia (PCP) in AIDS patients. Clin. Res.
1990, 38, 361A.
(8) Rosowsky, A.; Fu, H.; Chan, D. C. M.; Queener, S. F. Synthesis
of 2,4-diamino-6- [2′-O-(ω-carboxyalkyl)oxydibenz[b,f]azepin-5-
yl]methylpteridines as potent and selective inhibitors of Pneu-
mocystis carinii, Toxoplasma gondii, and Mycobacterium avium
dihydrofolate reductase. J. Med. Chem. 2004, 47, 2475-2485.
(9) Periti, O. Brodimoprim, a new bacterial dihydrofolate reductase
inhibitor. J. Chemother. 1995, 7, 221-223.
(10) Then, R. L. Antimicrobial dihydrofolate reductase inhibitors - -
achievements and future options. J. Chemother. 2004, 16, 3-12.
(11) (a) Grivsky, E. M.; Lee, S.; Siegel, C. W.; Duch, D. S.; Nichol, C.
A. 2,4-Diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]-
pyrimidine. J. Med. Chem. 1980, 23, 327-329. (b) Rauckman,
B. S.; Woolley, J. L., Jr.; Roth, B. Pyridopyrimidines methods
for their preparation and pharmaceutical formulations thereof.
EP 0278686; Wellcome Foundation, Ltd., 1988.
(12) It may be noted that numerous piritrexim analogues other than
those reported here were described in 1993, but unfortunately
the paper appeared in a Chinese language journal which is not
readily available in the U.S.; cf.: Zhang, Y.; Zhou, J.; Li, R.; Wu,
J.; Zhang, H. Synthesis and studies on the antitumor activities
of 2,4-diamino-6-substituted benzyl-5-methylpyrido[2,3-d]py-
rimidine derivatives. Chin. J. Med. Chem. 1993, 3, 85-96. From
the general synthetic scheme shown in this paper, it appears
that the â-keto ester route11a,b was the one that these authors
used.
(23) Stammers, D. K.; Delves, C.; Ballantine, S.; Jones, E. Y.; Stuart,
D. I., Achari, A. Bryant, P. K.; Champness, J. N. Preliminary
crystallographic data for Pneumocystis carinii dihydrofolate
reductase. J. Mol. Biol. 1993, 230, 679-680.
(24) Oefner, C.; D’Arcy, A.; Winkler, F. K. Crystal structure of human
dihydrofolate reductase complexes with folate. Eur. J. Biochem.
1988, 174, 377-385.
(25) Nahimana, A.; Rabodonirina, M.; Bille, J.; Francioli, P.; Hauser,
P. M. Mutations of Pneumocystis jirovecii dihydrofolate reductase
associated with failure of prophylaxis. Antimicrob. Agents
Chemother. 2004, 48, 4301-4305. As noted in this paper, a newly
identified problem associated with antifolate prophylaxis of
pneumocystis pneumonia in immunocompromised populations
is the emergence of drug-resistant DHFR in the face of selection
pressure with lipophilic inhibitors such as pyrimethamine. The
name Pneumocystis jirovecii has also been used instead of the
earlier version, Pneumocystis jiroveci; cf. Nahimana, A.; Rab-
odonirina, A.; Zanetti, G.; Meneau, I.; Francioli, P.; Bille, J.;
Hauser, P. M. Association between a specific Pneumocystis
jirovecii dihydropteroate synthase mutation and failure of py-
rimethamine prophylaxis in human immunodeficiency virus-
positive and -negative patients. J. Infect. Dis. 2003, 188, 1017-
1023.
(26) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E.
III; Wang, J.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz,
K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.;
Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.;
Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman,
P. A. AMBER 7; University of California: San Francisco, CA,
2002.
(13) Troschu¨tz, R.; Zink, M.; Gnibl, R. An alternative synthesis of
piritrexim, a lipophilic inhibitor of human dihydrofolate reduc-
tase. J. Heterocycl. Chem. 1999, 36, 703-706.
(14) Two other approaches that could have been used to obtain
potential precursors to compounds 6-9 were not pursued. The
first, based on work by Hill and co-workers,15 would involve
consecutive reactions of an appropriately 2,5-disubstituted
4-arylbutan-2-one with malononitrile, diethoxymethyl acetate,
hydrogen bromide, and guanidine. The second, based on a new
regioselective synthesis of PTX recently developed in our own
laboratory,16 would involve Pd(0)-catalyzed coupling between
2-amino-5-bromo- or 2-amino-5-iodonicotinonitrile and a 2,5-
disubstituted benzylzinc halide, followed by reaction with SbBr3/
t-BuONO and then guanidine.
JM0581718