Oxidation of the primary alcohol using a buffered TEMPO/
NaOCl oxidation4 furnished the expected aldehyde 6 ([R]24
D
Scheme 2. Synthesis of (-)-Kainic Acid
+10.4° (c 0.8, CHCl3)) in 91% total yield as a 98:2 ratio of
C4-epimers. Next, installation of the methyl group to give
the secondary alcohol 7 was achieved in near quantitative
yield as a 3:2 ratio of diastereomers by slow addition of the
aldehyde to MeMgBr at -78 °C. We found that the rate
and order of addition was crucial in minimizing the amount
of competing side products for this step.
Subsequent removal of the tertiary amide proved difficult
under classical hydrolytic conditions, due in part to the
lability of the chiral sulfoxyl group. This problem was
circumvented by treating alcohol 7 with catalytic KOtBu in
THF at 0 °C to afford lactone 8 in 86% yield as a 3:2 mixture
of diastereomers. Reduction of 8 using DIBAL-H, followed
by Wittig olefination of the lactol 9, gave the vinyl methyl
ether 10 in 95% yield over two steps as an inseparable
mixture of diastereomers (dr ) 3:2 and E:Z ) 5.4:1). Dess-
Martin oxidation of 10 afforded the vinyl methyl ether ketone
11 in 87% yield as an inseparable mixture of E/Z isomers,
with no evidence of epimerization by 1H NMR. Deprotection
of 11 using Hg(OAc)2 followed by KI workup then gave
the desired aldehyde 12 in 91% yield ([R]24D -19.8° (c 0.4,
CHCl3)).
The next key step in the synthesis was a global oxidation
of the aldehyde, sulfoxyl, and para-methoxy phenyl groups
using RuCl3/NaIO4.5 Gratifyingly, oxidation of 12 using these
conditions, followed by diazomethane workup, afforded the
dimethyl ester 13 in 75% ([R]24 -15.5° (c 0.8, CHCl3)).
D
We then set out to install the exo-methylene group. On the
basis of previous studies by other groups,6 we expected
standard Wittig olefination approaches to give a substantial
amount of the epimerized product. Use of the nonbasic Zn/
TiCl4/CH2I27,8 reagent furnished the desired olefin 14 cleanly
in 71% yield with no evidence of the epimerized allo-isomer.
All spectroscopic properties of the resulting olefin 14 were
in accord with those previously reported ([R]25 -45.1° (c
D
CHCl3)) in 78% yield.2 Hydroboration from the least
hindered face of the pyrrolidine ring using 9-BBN, followed
by standard oxidative workup, afforded the primary alcohol
1.3, CHCl3), lit. ([R]15 -48.1° (c 1.0, CHCl3)).6a,9
D
Conversion of 14 to 1 was then carried out as previously
reported by Yoo and co-workers.6a,9 Ester hydrolysis followed
by tosyl deprotection using Birch conditions afforded crude
1 from 14. Purification of 1 was then carried out using an
ion-exchange resin (Amberlite CG50) followed by recrys-
5 ([R]24 +33.4° (c 0.8, CHCl3)) as a single diastereomer.
D
(1) (a) Kainic Acid as a Tool in Neurobiology; McGeer, E. G., Olney, J.
W., McGeer, P. L., Eds.; Raven: New York, 1978. (b) Excitatory Amino
Acids; Simon, R. P., Ed.; Thieme Medical: New York, 1992. (c) Moloney,
M. G. Nat. Prod. Rep. 1990, 16, 485. (d) Moloney, M. G. Nat. Prod. Rep.
1998, 15, 205.
tallization to afford optically pure (-)-(R)-kainic acid ([R]23
D
(2) Scott, M. E.; Han, W.; Lautens, M. Org. Lett. 2004, 6, 3309.
(3) For a review of previous syntheses of kainic acid, see: (a) Parsons,
A. F. Tetrahedron 1996, 52, 4149. For some recent syntheses of kainic
acid, see: (b) Hodgson, D. M.; Hachisu, S.; Andrews, M. D. Org. Lett.
2005, 7, 815. (c) Martinez, M. M.; Hoppe, D. Org. Lett. 2004, 6, 3743. (d)
Anderson, J. C.; Whiting, M. J. Org. Chem. 2003, 68, 6160. (e) Trost, B.
M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. (f) Clayden, J.; Menet, C. J.;
Mansfield, D. J. Chem. Commun. 2002, 1, 38. (g) Clayden, J.; Menet, C.
J.; Tchabanenko, K. Tetrahedron 2002, 58, 4727. (h) Hirasawa, H.;
Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2001, 42, 7587. (i) Xia,
Q.; Ganem, B. Org. Lett. 2001, 3, 485. (j) Campbell, A. D.; Raynham, T.
M.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 2000, 19, 3194. (k)
Nakagawa, H.; Sugahara, T.; Ogasawara, K. Org. Lett. 2000, 2, 3181. (l)
Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 6199.
(m) Clayden, J.; Tchabanenko, K. Chem. Commun. 2000, 4, 317. (n) Cossy,
J.; Cases, M.; Pardo, D. G. Synlett 1998, 507. (o) Bachi, M. D.; Melman,
A. J. Org. Chem. 1997, 62, 1896.
(4) Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992,
33, 5029.
(5) (a) Kasai, M.; Ziffer, H. J. Org. Chem. 1983, 48, 2346. (b) Carlsen,
P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981,
46, 3936. (c) Caputo, J. A.; Fuchs, R. Tetrahedron Lett. 1967, 8, 4729. (d)
Chakraborti, A. K.; Ghatak, U. R. Synthesis 1983, 746.
(6) (a) Yoo, S.; Lee, S.; Jeong, N.; Cho, I. Tetrahedron Lett. 1993, 34,
3435. (b) Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 5418. (c)
Greenwood, E. S.; Parsons, P. J. Synlett 2002, 1, 167. (d) Greenwood, E.
S.; Hitchcock, P. B.; Parsons, P. J. Tetrahedron 2003, 59, 3307. (e) Monn,
J. A.; Valli, M. J. J. Org. Chem. 1994, 59, 2773.
(7) Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985,
26, 5579.
(8) Use of Lombardo’s reagent also gave the methylenated product in
comparible yield: (a) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293. (b)
Lombardo, L. Org. Synth. 1987, 65, 81.
(9) Yoo, S.; Lee, S. H. J. Org. Chem. 1994, 59, 6968.
3046
Org. Lett., Vol. 7, No. 14, 2005