4436
M. Manpadi, A. Kornienko / Tetrahedron Letters 46 (2005) 4433–4437
3. For recent discussion, see: Pettit, G. R.; Melody, N.;
Herald, D. L. J. Nat. Prod. 2004, 67, 322.
4. Antoun, M. D.; Mendoza, N. T.; Rios, Y. R.; Proctor, G.
R. J. Nat. Prod. 1993, 56, 1423.
5. Ghosal, S.; Singh, S.; Kumar, Y.; Srivastava, R. S.
Phytochemistry 1989, 28, 611.
6. Gabrielsen, B.; Monath, T. P.; Huggins, J. W.; Kefauver,
D. F.; Pettit, G. R.; Groszek, G.; Hollingshead, M.; Kirsi,
J. J.; Shannon, W. M.; Shubert, E. M.; Dare, J.; Ugarkar,
B.; Ussery, M. A.; Phelan, M. J. J. Nat. Prod. 1992, 55,
1569.
aryl bromide was added dropwise to allow a gentle
reaction. The reaction mixture was allowed to cool to
room temperature and was cannulated to a slurry of CuI
(3.52 mmol, 0.67 g) in THF (10 mL) at ꢀ78 ꢁC. The
mixture was stirred at ꢀ78 ꢁC for 40 min (in the synthesis
of 4e the mixture was stirred at 0 ꢁC for 2 h, as no trans-
metallation occurred at ꢀ78 ꢁC). Me3SiCl (7.03 mmol,
0.76 g) and enoate 3 (0.703 mmol, 0.311 g in 10 mL of
THF) were added sequentially at ꢀ78 ꢁC. The yellow-
brown suspension was stirred overnight while slowly
warming up to room temperature. The reaction mixture
was quenched with a mixture of concd. NH4OH and satd
NH4Cl (1:9, 30 mL) and extracted with ether (3 · 30 mL).
The combined organic layers were washed with brine,
dried with MgSO4, and concentrated under reduced
pressure. The residue was absorbed on silica gel and
purified by column chromatography (5–10% EtOAc/hex-
anes) to yield 4a–f as an oil.
7. For total syntheses of pancratistatin see: (a) Danishefsky,
S.; Lee, J. Y. J. Am. Chem. Soc. 1989, 111, 4829; (b) Tian,
X.; Hudlicky, T.; Ko¨nigsberger, K. J. Am. Chem. Soc.
1995, 117, 3643; (c) Hudlicky, T.; Tian, X.; Ko¨nigsberger,
K.; Maurya, R.; Rouden, J.; Fan, B. J. Am. Chem. Soc.
1996, 118, 10752; (d) Trost, B. M.; Pulley, S. R. J. Am.
Chem. Soc. 1995, 117, 10143; (e) Magnus, P.; Sebhat, I. K.
J. Am. Chem. Soc. 1998, 120, 5341; (f) Magnus, P.; Sebhat,
I. K. Tetrahedron 1998, 54, 15509; (g) Rigby, J. H.;
Maharoof, U. S. M.; Mateo, M. E. J. Am. Chem. Soc.
2000, 122, 6624; (h) Doyle, T. J.; Hendrix, M.; VanDer-
veer, D.; Javanmard, S.; Haseltine, J. Tetrahedron 1997,
53, 11153; (i) Pettit, G. R.; Melody, N.; Herald, D. L.
J. Org. Chem. 2001, 66, 2583; (j) Kim, S.; Ko, H.; Kim, E.;
Kim, D. Org. Lett. 2002, 4, 1343; (k) Ko, H.; Kim, E.;
Park, J. E.; Kim, D.; Kim, S. J. Org. Chem. 2004, 69, 112.
8. For recent discussion, see: Rinner, U.; Hudlicky, T.
Synlett 2005, 365.
9. For total syntheses of narciclasine, see: (a) Rigby, J. H.;
Mareo, M. E. J. Am. Chem. Soc. 1997, 119, 12655; (b)
Gonzales, D.; Martinot, T.; Hudlicky, T. Tetrahedron
Lett. 1999, 40, 3077; (c) Keck, G. E.; Wager, T. T.;
Rodriquez, J. F. D. J. Am. Chem. Soc. 1999, 121, 5176; (d)
Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. J. Am.
Chem. Soc. 2000, 122, 6624; (e) Elango, S.; Yan, T.-H.
J. Org. Chem. 2002, 67, 6954; (f) Hudlicky, T.; Rinner, U.;
Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.;
Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67,
8726.
16. Characterization data: 3: Rf 0.64 (20% EtOAc/hexanes);
21
1
½aꢁD +12.3 (c 1.7, CHCl3); H NMR (CDCl3) d 7.38–7.69
(m, 10H), 6.85 (dd, 1H, J = 5.5, 15.7 Hz), 6.06 (dd, 1H,
J = 1.4, 15.7 Hz), 4.72 (d, 1H, J = 6.6 Hz), 4.65 (d, 1H,
J = 6.6 Hz), 4.32 (m, 1H), 4.16 (q, 2H, J = 7.1 Hz), 3.71
(dd, 1H, J = 6.6, 10.5 Hz), 3.63 (dd, 1H, J = 5.2, 10.7 Hz),
3.35 (s, 3H), 1.26 (t, 3H, J = 7.1 Hz), 1.05 (s, 9H); 13C
NMR (CDCl3) d 166.2, 145.2, 135.7, 133.2, 129.9, 127.8,
122.9, 95.3, 76.0, 66.1, 60.5, 55.7, 26.8, 19.3, 14.3; HRMS
m/z (ESI) calcd for C25H34O5SiNa (M+Na+) 465.2067,
found 465.2063. 4a: Rf 0.58 (20% EtOAc/hexanes);
21
½aꢁD ꢀ43.9 (c 0.5, CHCl3); 1H NMR (CDCl3) d 7.19–
7.60 (m, 15H), 4.68 (d, 1H, J = 6.9 Hz), 4.51 (d, 1H,
J = 6.9 Hz), 3.97 (q, 2H, J = 7.2 Hz), 3.75 (m, 1H), 3.46
(m, 3H), 3.27 (s, 3H), 2.97 (dd, 1H, J = 5.2, 15.6 Hz), 2.64
(dd, 1H, J = 10.2, 15.6 Hz), 1.08 (t, 3H, J = 7.2 Hz), 1.03
(s, 9H); 13C NMR (CDCl3) d 172.8, 141.3, 135.5, 133.2,
129.8, 128.5, 127.8, 126.9, 96.4, 81.0, 63.9, 60.0, 56.0, 43.1,
37.2, 26.8, 19.2, 14.0; HRMS m/z (ESI) calcd for
C31H40O5SiNa (M+Na+) 543.2537, found 543.2530. 4b:
21
Rf 0.45 (20% EtOAc/hexanes); ½aꢁD ꢀ45.7 (c 0.2, CHCl3);
1H NMR (CDCl3) d 6.76–7.60 (m, 14H), 4.52 (d, 1H,
J = 6.9 Hz), 4.69 (d, 1H, J = 6.9 Hz), 3.98 (q, 2H,
J = 7.0 Hz), 3.77 (s, 3H), 3.75 (m, 1H), 3.42 (m, 3H),
3.29 (s, 3H), 2.96 (dd, 1H, J = 5.2, 15.4), 2.59 (dd, 1H,
J = 10.5, 15.4 Hz), 1.07 (t, 3H, J = 7.0 Hz), 1.03 (s, 3H);
13C NMR (CDCl3) d 172.7, 158.4, 135.7, 135.6, 133.4,
133.2, 129.7, 129.3, 127.7, 116.1, 114.8, 113.8, 96.4, 81.1,
63.7, 60.2, 56.1, 55.3, 42.6, 37.4, 26.9, 19.3, 14.2; HRMS
m/z (ESI) calcd for C32H42O6SiNa (M+Na+) 573.2642,
10. Nadein, O. N.; Kornienko, A. Org. Lett. 2004, 6, 831.
11. Relative cis-configuration of an aromatic ring and an
adjacent oxygen stereocenter (marked with asterisks in
Fig. 1) is conserved throughout these alkaloid types and it
translates to anti-stereochemistry in an open-chain
precursor.
12. For key reports, see: (a) Nicolaou, K. C.; Pavia, M. R.;
Seitz, S. P. J. Am. Chem. Soc. 1981, 103, 1224; (b) Roush,
W. R.; Lesur, B. M. Tetrahedron Lett. 1983, 24, 2231; (c)
Yamamoto, Y.; Nishii, S.; Ibuka, T. Chem. Commun.
1987, 464; (d) Hanessian, S.; Sumi, K. Synthesis 1991,
1083; (e) Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka,
T.; Kitahara, H. J. Am. Chem. Soc. 1992, 114, 7652; (f)
Hanessian, S.; Gai, Y.; Wang, W. Tetrahedron Lett. 1996,
7473; (g) Hanessian, S.; Wang, W.; Gai, Y. Tetrahedron
Lett. 1996, 37, 7477; (h) Hanessian, S.; Wang, W.; Gai, Y.;
Olivier, E. J. Am. Chem. Soc. 1997, 119, 10034; (i) Ziegler,
F. E.; Wang, Y. J. Org. Chem. 1998, 63, 426; (j) Ziegler, F.
E.; Wang, Y. J. Org. Chem. 1998, 63, 7920; (k) Hanessian,
S.; Ma, J.; Wang, W. Tetrahedron Lett. 1999, 40, 4627.
13. Takano, S.; Kurotaki, A.; Takahashi, M.; Ogasawara, K.
Synthesis 1986, 403.
21
found 573.2630. 4c: Rf 0.48 (20% EtOAc/hexanes); ½aꢁD
1
ꢀ37.8 (c 0.6, CHCl3); H NMR (CDCl3) d 7.63–6.92 (m,
14H), 4.67 (d, 1H, J = 6.9 Hz), 4.50 (d, 1H, J = 6.9 Hz),
3.99 (q, 2H, J = 7.1 Hz), 3.71 (m, 1H), 3.52 (m, 3H), 3.27
(s, 3H), 2.97 (dd, 1H, J = 4.9, 15.7 Hz), 2.60 (dd, 1H,
J = 10.5, 15.7 Hz), 1.07 (t, 3H, J = 7.1 Hz), 1.03 (s, 3H);
13C NMR (CDCl3) d 172.4, 136.9, 135.7, 135.5, 133.3,
133.1, 129.9, 129.8, 127.7, 115.4, 115.1, 96.4, 80.8, 63.6,
60.3, 56.1, 42.6, 37.1, 31.0, 26.9, 19.2, 14.2; HRMS m/z
(ESI) calcd for C31H39FO5SiNa (M+Na+) 561.2443,
21
found 561.2422. 4d: Rf1 0.46 (20% EtOAc/hexanes); ½aꢁD
ꢀ35.59 (c 0.2, CHCl3); H NMR (CDCl3) d 7.59–7.30 (m,
10H), 6.66 (m, 3H), 5.91 (s, 2H), 4.70 (d, 1H, J = 6.9 Hz),
4.53 (d, 1H, J = 6.9 Hz), 4.0 (q, 2H, J = 7.2 Hz), 3.69 (m,
1H), 3.51 (m, 3H), 2.94 (dd, 1H, J = 4.95, 15.4 Hz), 2.56
(dd, 1H, J = 10.2, 15.4 Hz), 1.12 (t, 3H, J = 7.2 Hz), 1.03
(s, 9H); 13C NMR (CDCl3) d 172.5, 147.8, 146.3, 135.6,
133.7, 129.7, 127.7, 121.8, 108.3, 108.0, 100.9, 96.5, 81.7,
64.0, 60.3, 56.0, 35.8, 34.7, 31.7, 26.9, 25.3, 22.7, 14.2;
HRMS m/z (ESI) calcd for C32H40O7SiNa (M+Na+)
587.2435, found 587.2421. 4e: Rf 0.38 (20% EtOAc/
14. We were unable to detect the presence of syn isomers in
reaction product mixtures.
15. General procedure for the arylcuprate additions: ca. 1 mL
of a required aryl bromide (7.03 mmol) was added to
crushed Mg turnings (7.03 mmol, 0.17 g) in THF (10 mL)
under nitrogen atmosphere. Once the reaction started, the
solution warmed up and slightly darkened. The rest of the