C O M M U N I C A T I O N S
Table 1. Electronic Effect of Acyl Protective Group on the Imine
Nitrogen (Eq 1, Ar ) Ph, 1b, and (R)-5 Were Used)a
syntheses of â-amino acid derivatives with high optical purity by
means of functionalization of diazo moiety clearly highlight the
diverse synthetic potential of this direct asymmetric transformation.
In conclusion, a new variant of phosphoric acid-catalyzed C-C
bond forming reaction, direct alkylation of R-diazoester, via C-H
bond cleavage was presented. The resulting products, â-amino-R-
diazoesters, are highly functionalized and useful synthetic precursors
for various types of â-amino acids. Further synthetically useful
direct transformations promoted by chiral phosphoric acid catalysts
are underway.
entry
R
′
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
Ph
59
80
84
77
76
82
68
72
73
57
81
90
90
90
92
91
90
86
91
93
96
97
o-Br-C6H4-
o-Me-C6H4-
o-MeO-C6H4-
m-MeO-C6H4-
1-naphthyl-
p-Br-C6H4-
p-Me-C6H4-
p-MeO-C6H4-
p-Me2N-C6H4-
p-Me2N-C6H4-
9
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and The Sumitomo
Foundation.
10
11d
a Unless otherwise noted, all reactions were carried out with 0.1 mmol
of 1 in 1 mL of toluene at room temperature for 5 h. b Isolated yield.
c Enantiomeric excess was determined by HPLC analysis. See Supporting
Information for details. d The reaction was carried out for 24 h.
Supporting Information Available: Representative experimental
procedures and spectroscopic data for 2-7. This material is available
Table 2. Organocatalyzed Direct Alkylation of tert-Butyl
Diazoacetate (1b) with Representative Aldimine Derivatives (2)
(Eq 1, R′ ) p-Me2N-C6H4, 1b, and (R)-5 Were Used)a
References
(1) For reviews on stereoselective F-C reaction, see: (a) Jørgensen, K. A.
Synthesis 2003, 1117. (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A.
Angew. Chem., Int. Ed. 2004, 43, 550.
(2) For reviews on atom economy, see: (a) Trost, B. M. Science 1991, 254,
1471. (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
(3) For other recent examples of Lewis acid-catalyzed asymmetric F-C
reaction, see: (a) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H.
W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (b) Yuan, Y.; Wang, X.;
Li, X.; Ding, K. J. Org. Chem. 2004, 69, 146. (c) Zhou, J.; Tang, Y.
Chem. Commun. 2004, 432. (d) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang,
Y. J. Org. Chem. 2004, 69, 1309.
(4) For reviews on enantioselective organocatalysis, see: (a) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (b) Special issue on
enantioselective organocatalysis: Acc. Chem. Res. 2004, 37, 487.
(5) For enantioselective organocatalytic 1,4-F-C alkylation of aromatic or
heteroaromatic compounds, see: (a) Paras, N. A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2001, 123, 4370. (b) Austin, J. F.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2002, 124, 1172. (c) Paras, N. A.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2002, 124, 7894.
a All reactions were carried out with 0.1 mmol of 1 in 1 mL of toluene
at room temperature for 24 h. b Isolated yield. c Enantiomeric excess was
determined by HPLC analysis. See Supporting Information for details. d 3
mol % of (R)-5 was used.
(6) For a review on Brønsted acid catalysis, see: Schreiner, P. R. Chem. Soc.
ReV. 2003, 32, 289.
Scheme 2. Synthetic Utility of â-Amino-R-Diazoestersa
(7) For selected recent examples of asymmetric Brønsted acid catalysis, see:
(a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003,
424, 146. (b) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003,
125, 12094. (c) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.
2003, 125, 12672. (d) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J.
Am. Chem. Soc. 2004, 126, 3418. (e) Joly, G. D.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 4102. (f) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566. (g) Thadani, A. N.; Stankovic,
A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5846. (h)
Du, H.; Zhao, D.; Ding, K. Chem.-Eur. J. 2004, 10, 5964. (i) Yoon, T.
P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (j) Momiyama,
N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080. (k) Unni, A. K.;
Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005,
127, 1336.
(8) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(9) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126,
11804.
(10) (a) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518.
(b) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987 and
references cited therein.
a Conditions: (i) PtO2, H2, EtOAc/AcOH, room temperature (rt), 79%.
(ii) Tf2O, 2,6-lutidine, CH2Cl2, -78 to 0 °C, then MeOH, 0 °C to rt, 70%.
(iii) Pd/C, H2, MeOH, rt, 60%. (iv) Oxone, NaHCO3, H2O/acetone/CH2Cl2,
0 °C to rt. (v) NaBH4, MeOH, -78 °C, anti/syn ) >99:<1, 95% (in two
steps).
(11) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612 and
references cited therein.
(12) In the case of N-acyl imines, the low nucleophilicity of the resulting amide
nitrogen might be considered the cause of this selective transformation.
Unfortunately, N-alkyl-protected imines, which are commonly used for
aziridine formation under acidic conditions, did not react under our reaction
conditions.
(13) Chiral auxiliary-controlled base promoted similar transformations have
been reported. See: Zhao, Y.; Ma, Z.; Zhang, X.; Zou, Y.; Jin, X.; Wang,
J. Angew. Chem., Int. Ed. 2004, 43, 5977.
(14) Phosphoric acid 5 has been used as effective NMR shift reagent. See:
Inanaga, J. Eur. Pat. Appl. EP-A1-1134209, 2001.
(15) 7 would be a useful precursor of the side chain of the anticancer drug,
taxol. Tosaki, S.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 2147.
moiety of 3b (R′ ) p-Me2N-C6H4, Ar ) Ph, 97% ee) with Adams’
catalyst under a hydrogen atmosphere and successive deprotection
provided â-amino acid tert-butylester (6) without any loss of
enantiomeric excess. R-Oxo-functionality was efficiently introduced
by oxone, and subsequent diastereoselective reduction enabled us
to synthesize anti-â-amino-R-hydroxy acid tert-butylester (7) from
3b (R′, Ar ) Ph, recrystallized, >99% ee).15 These short step
JA051922A
9
J. AM. CHEM. SOC. VOL. 127, NO. 26, 2005 9361