10.1002/anie.202015514
Angewandte Chemie International Edition
COMMUNICATION
2014, 53, 11172-11176; c) D. P. Mukhopadhyay, D.
Schleier, S. Wirsing, J. Ramler, D. Kaiser, E. Reusch, P.
Hemberger, T. Preitschopf, I. Krummenacher, B. Engels, I.
Fischer, C. Lichtenberg, Chem. Sci. 2020, 11, 7562-7568;
d) J. W. M. MacMillan, K. M. Marczenko, E. R. Johnson,
S. S. Chitnis, Chem. Eur. J. 2020, DOI:
10.1002/chem.202003153.
T. Y. Lai, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc.
2018, 140, 5674-5677.
a) R. J. Schwamm, M. Lein, M. P. Coles, C. M. Fitchett,
Angew. Chem. Int. Ed. 2016, 55, 14798-14801; b) R. J.
Schwamm, M. Lein, M. P. Coles, C. M. Fitchett, J. Am.
Chem. Soc. 2017, 139, 16490-16493.
a) R. J. Schwamm, M. Lein, M. P. Coles, C. M. Fitchett,
Chem. Commun. 2018, 54, 916-919; b) J. Ramler, I.
Krummenacher, C. Lichtenberg, Chem. Eur. J. 2020, 26,
14551-14555.
HPiPr2 and HP(cyclo-pentyl)2 underwent dehydrocoupling in
excellent yields (entries 8,9). Not only electron-donating
substituents at P (alkyl vs aryl), but also increased steric bulk
around the phosphorus atom tend to complicate P–P coupling
reactions.[25b, 25d, 28-29] Thus, it is remarkable that not only the aryl
species HPMes2 (entry 3), but even HPtBu2 and HPAd2 with their
extremely bulky alkyl groups could quantitatively be transformed
into the coupling products 5-tBu and 5-Ad with modified
experimental conditions (entries 10,11). Reactions of the
secondary arsane HAsPh2 with 1-Me (or 4) were performed as a
proof of principle and resulted in the selective formation of the
dehydrocoupling product 6-Ph in 80% yield (entry 12 and Supp.
Inf.). In the formation of Ph2P–PPh2, literature reports suggest
[4]
[5]
[6]
homolytic splitting of L1Bi–PPh2 and L2Pb–PPh2 bonds (vide
30]
supra).[5a,
Indeed, we detected a weak EPR spectroscopic
[7]
[8]
J. Ramler, I. Krummenacher, C. Lichtenberg, Angew.
Chem. Int. Ed. 2019, 58, 12924-12929.
signal in reactions of 4 with HPMes2, which was tentatively
assigned to a P-centered radical (giso = 2.007, a(31P) = 270 MHz
(96 G))[31] and thus suggests a radical nature of this reaction step
(for details and full discussion see Supp. Inf.). In contrast, polar
mechanisms have been discussed for most main group
compounds in phosphane dehydrocoupling.[25a-c, 26b, 28-29] Notably,
the only other main group species that has been reported for the
challenging dehydropouling of dialkylphosphanes has also been
suggested to operate via polar reaction pathways.[29] Transition-
metal-based catalytic protocols for phosphane dehydrocoupling
require elevated temperatures, longer reaction times, and/or
show limitations in their substrate scope (see Supp. Inf.).[24]
In summary, we have re-investigated the fundamental
bismuth diarylamide [Bi(NPh2)3] and provided data for the
thorough understanding of this class of compounds. As a striking
feature, they can easily release aminyl radicals under mild
reaction conditions and mediate highly selective N–N bond
formation. The first experimental proof of facile Bi–N bond
homolysis has been delivered, electronic parameters controlling
aminyl radical formation have been revealed, and fundamental
mechanistic aspects have been uncovered. Simple homoleptic
a) S. Yamago, E. Kayahara, M. Kotani, B. Ray, Y. Kwak,
A. Goto, T. Fukuda, Angew. Chem. Int. Ed. 2007, 46,
1304-1306; b) C. Lichtenberg, F. Pan, T. P. Spaniol, U.
Englert, J. Okuda, Angew. Chem. Int. Ed. 2012, 51,
13011-13015; c) S. Yamago, K. Iida, J.-i. Yoshida, J. Am.
Chem. Soc. 2002, 124, 13666-13667; d) Y. Lu, S.
Yamago, Angew. Chem. Int. Ed. 2019, 58, 3952-3956.
a) R. J. Schwamm, J. R. Harmer, M. Lein, C. M. Fitchett,
S. Granville, M. P. Coles, Angew. Chem. Int. Ed. 2015, 54,
10630-10633; b) C. Ganesamoorthy, C. Helling, C.
Wölper, W. Frank, E. Bill, G. E. Cutsail, S. Schulz, Nat.
Commun. 2018, 9, 87.
a) T. A. Hanna, A. L. Rieger, P. H. Rieger, X. Wang, Inorg.
Chem. 2002, 41, 3590-3592; b) C. Limberg, Angew.
Chem. Int. Ed. 2003, 42, 5932-5954.
J. Stubbe, W. A. van Der Donk, Chem. Rev. 1998, 98,
705-762.
a) T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069-
3087; b) G. Cecere, C. M. König, J. L. Alleva, D. W. C.
MacMillan, J. Am. Chem. Soc. 2013, 135, 11521-11524; c)
C. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2015, 54,
8287-8291; d) Y. Takeda, J. Hayakawa, K. Yano, S.
Minakata, Chem. Lett. 2012, 41, 1672-1674; e) P. Xiong,
H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339-3350.
a) M. Yarema, M. V. Kovalenko, G. Hesser, D. V. Talapin,
W. Heiss, J. Am. Chem. Soc. 2010, 132, 15158-15159; b)
C. Hering-Junghans, A. Schulz, M. Thomas, A. Villinger,
Dalton Trans. 2016, 45, 6053-6059; c) M. He, L.
Protesescu, R. Caputo, F. Krumeich, M. V. Kovalenko,
Chem. Mater. 2015, 27, 635-647.
M.-G. Zhao, T.-T. Hao, X. Zhang, J.-P. Ma, J.-H. Su, W.
Zheng, Inorg. Chem. 2017, 56, 12678-12681.
a) F. Ando, T. Hayashi, K. Ohashi, J. Koketsu, J. Inor.g
Nucl. Chem. 1975, 37, 2011-2013; b) M. Vehkamaki, T.
Hatanpaa, M. Ritala, M. Leskela, J. Mater. Chem. 2004,
14, 3191-3197.
[9]
[10]
[11]
[12]
[13]
bismuth
amides
efficiently
mediate
highly
selective
dehydrocoupling of HPnR2 to give R2Pn–PnR2 (Pn = N-As). These
findings reveal the potential of well-defined bismuth compounds
to be exploited for the controlled generation and synthetic
utilization of radicals such as [PnR2]●. The ability of bismuth to
readily release radical species and to easily accommodate very
bulky ligands due to its large atomic radius sets bismuth-based
methodologies apart from previously reported reagents in the field.
[14]
[15]
[16]
[17]
[18]
O. J. Scherer, P. Hornig, M. Schmidt, J. Organomet.
Chem. 1966, 6, 259-264.
W. Clegg, N. A. Compton, R. J. Errington, N. C. Norman,
N. Wishart, Polyhedron 1989, 8, 1579-1580.
Keywords: bismuth amide • aminyl radical • radical coupling •
heavier pnictogens • diphosphanes
For cationic derivatives of [Bi(NPh2)3] see: a) H. Dengel,
C. Lichtenberg, Chem. Eur. J. 2016, 22, 18465-18475; b)
B. Ritschel, J. Poater, H. Dengel, F. M. Bickelhaupt, C.
Lichtenberg, Angew. Chem. Int. Ed. 2018, 57, 3825-3829;
c) J. Ramler, J. Poater, F. Hirsch, B. Ritschel, I. Fischer, F.
M. Bickelhaupt, C. Lichtenberg, Chem. Sci. 2019, 10,
4169-4176.
S. Schulz, A. Kuczkowski, D. Bläser, C. Wölper, G.
Jansen, R. Haack, Organometallics 2013, 32, 5445-5450.
a) W. C. Danen, F. A. Neugebauer, Angew. Chem. Int. Ed.
1975, 14, 783-789; b) F. A. Neugebauer, P. H. H. Fischer,
Chem. Ber. 1965, 98, 844-850.
[1]
a) A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016,
55, 58-102; b) V. Lyaskovskyy, B. de Bruin, ACS Catal.
2012, 2, 270-279; c) C. Lichtenberg, Chem. Eur. J. 2020,
26, 9674-9687; d) F. Dénès, M. Pichowicz, G. Povie, P.
Renaud, Chem. Rev. 2014, 114, 2587-2693.
[2]
a) C. Helling, S. Schulz, Eur. J. Inorg. Chem. 2020, 3209-
3221; b) G. E. Cutsail, Dalton Trans. 2020, 49, 12128-
12135; c) C. Lichtenberg, Radical compounds of Antimony
and Bismuth in Encyclopedia of Inorganic and
[19]
[20]
Bioinorganic Chemistry, DOI:
10.1002/9781119951438.eibc2751, Wiley VCH, 2020; d)
C. Lichtenberg, Angew. Chem. Int. Ed. 2016, 55, 484-486.
a) T. Y. Lai, L. Tao, R. D. Britt, P. P. Power, J. Am. Chem.
Soc. 2019, 141, 12527-12530; b) S. Ishida, F. Hirakawa,
K. Furukawa, K. Yoza, T. Iwamoto, Angew. Chem. Int. Ed.
[21]
B. Nekoueishahraki, P. P. Samuel, H. W. Roesky, D.
Stern, J. Matussek, D. Stalke, Organometallics 2012, 31,
6697-6703.
[3]
4
This article is protected by copyright. All rights reserved.