4772
S. Serra, C. Fuganti / Tetrahedron Letters 46 (2005) 4769–4772
95 (74), 81 (36), 67 (23); IR (neat) cmꢀ1 1690, 1628, 1460,
1368, 1162, 705.
MS m/z 218 (29), 203 (2), 175 (100), 160 (13), 147 (12), 141
(4), 128 (4), 121 (5), 115 (6), 105 (2), 91 (4); IR (neat) cmꢀ1
3460, 1619, 1579, 1464, 1287, 1239, 1164, 1029, 974, 841.
20
19. Aldehyde 10: ½aꢁD ꢀ12.8 (c 3, CHCl3). Anal. Calcd for
C11H18O: C, 79.46; H, 10.91. Found: C, 79.60; H, 10.90;
1H NMR (400 MHz, CDCl3) d 9.41 (s, 1H), 6.63 (d,
J = 3.4 Hz, 1H), 2.48–2.33 (m, 2H), 2.00–1.88 (m, 1H),
1.86–1.78 (m, 1H), 1.77–1.69 (m, 1H), 1.50–1.33 (m, 2H),
1.14 (d, J = 7.2 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H), 0.84 (d,
J = 6.8 Hz, 3H); 13C NMR (400 MHz, CDCl3) d 194.5,
157.2, 144.1, 36.5, 31.9, 29.9, 27.5, 22.5, 21.3, 20.1, 19.6;
EI-MS m/z 166 (76), 151 (19), 137 (23), 123 (100), 109 (68),
95 (90), 81 (48), 67 (27); IR (neat) cmꢀ1 1687, 1633, 1458,
1171, 695.
20. Ro¨der, E.; Krauss, H. Liebig Ann. Chem. 1992, 177–181.
21. (a) Johnson, W. S.; Daub, G. H. Org. React. 1951, 6, 1–73;
for a more recent procedure on aliphatic aldehydes see: (b)
Burk, M. J.; Bienewald, F.; Harris, M.; Zanotti-Gerosa,
A. Angew. Chem., Int. Ed. 1998, 37, 1931–1933.
20
27. (+)-cis-8-Hydroxycalamenene 20: mp 71–73 °C; ½aꢁD
+67.9 (c 1, CHCl3). Anal. Calcd for C15H22O: C, 82.52;
H, 10.16. Found: C, 82.65; H, 10.15; 1H NMR (400 MHz,
CDCl3) d 6.71 (s, 1H), 6.42 (s, 1H), 4.52 (s, 1H), 3.12–3.02
(m, 1H), 2.74–2.66 (m, 1H), 2.45–2.32 (m, 1H), 2.25 (s,
3H), 1.82–1.56 (m, 4H), 1.23 (d, J = 7.1 Hz, 3H), 1.05 (d,
J = 6.9 Hz, 3H), 0.71 (d, J = 6.9 Hz, 3H); 13C NMR
(400 MHz, CDCl3) d 153.0, 141.3, 135.7, 126.7, 120.9,
112.8, 43.3, 30.9, 28.8, 26.5, 21.1, 21.1, 20.5, 17.4, 16.4; EI-
MS m/z 218 (15), 203 (2), 175 (100), 160 (11), 147 (12), 141
(4), 128 (5), 121 (6), 115 (9), 105 (4), 91 (7); IR (nujol)
cmꢀ1 3405, 1619, 1583, 1459, 1377, 1271, 1170, 839.
28. (a) McPhail, K. L.; Davies-Coleman, M. T.; Starmer, J. J.
Nat. Prod. 2001, 64, 1183–1190; (b) Mulholland, D. A.;
Iourine, S.; Taylor, D. A. H. Phytochemistry 1998, 47,
1421–1422.
22. The compounds of type 14 were identified by quenching
the reaction at low temperature followed by GC–MS
analysis of the crude reaction mixture.
ˇ ´
ˇ ˇ
´
´
29. (a) Konecny, K.; Streibl, M.; Vasickova, S.; Budesinsky,
˘ˇ
M.; Saman, D.; Ubik, K.; Herout, V. Collect. Czech.
ˇ
23. Acids of type 4; their 3-(Z) isomers and the 2,5-hexadi-
enoic acids were identified by NMR and GC–MS analysis
of the purified mixture of dienoic acids.
Chem. Commun. 1985, 50, 80–93; (b) Nagashima, F.;
Momosaki, S.; Watanabe, Y.; Takaoka, S.; Huneck, S.;
Asakawa, Y. Phytochemistry 1996, 42, 1361–1366.
30. Rossi, R. A.; Bunnett, J. F. J. Org. Chem. 1973, 38, 2314–
2318.
20
24. Hydroxy-ester 17: mp 129–130 °C; ½aꢁD ꢀ71.9 (c 1,
CHCl3). Anal. Calcd for C16H22O3: C, 73.25; H, 8.45.
20
1
Found: C, 73.15; H, 8.45; H NMR (400 MHz, CDCl3) d
31. (ꢀ)-trans Calamenene 21: ½aꢁD ꢀ75.2 (c 1, CHCl3). Anal.
7.46 (d, J = 1.5 Hz, 1H), 7.32 (d, J = 1.5 Hz, 1H), 5.28 (s,
1H), 3.89 (s, 3H), 3.24–3.14 (ddq, J = 2.3, 6.6, 7 Hz, 1H),
2.59–2.53 (ddd, J = 2.7, 5.5, 5.9 Hz, 1H), 2.10–1.92 (m,
2H), 1.91–1.75 (m, 2H), 1.54 (dm, J = 13.3 Hz, 1H), 1.21
(d, J = 7 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.82 (d,
J = 6.9 Hz, 3H); 13C NMR (400 MHz, CDCl3) d 168.0,
153.7, 141.5, 135.7, 126.9, 123.3, 113.2, 52.1, 43.1, 33.2,
27.2, 26.8, 21.9, 20.8, 19.4, 19.0; EI-MS m/z 262 (24), 231
(8), 219 (100), 187 (40), 160 (10), 145 (11), 131 (4), 115 (7),
105 (2), 91 (3); IR (nujol) cmꢀ1 3420, 1698, 1582, 1438,
1421, 1294, 1239, 1029, 767.
Calcd for C15H22: C, 89.04; H, 10.96. Found: C, 89.15; H,
1
11.00; H NMR (400 MHz, CDCl3) d 7.11 (d, J = 7.9 Hz,
1H), 7.01 (s, 1H), 6.93 (d, J = 7.9 Hz, 1H), 2.81–2.70 (m,
1H), 2.72–2.64 (m, 1H), 2.29 (s, 3H), 2.28–2.16 (m, 1H),
2.00–1.91 (m, 1H), 1.88–1.78 (m, 1H), 1.65–1.54 (m, 1H),
1.39–1.27 (m, 1H), 1.26 (d, J = 7 Hz, 3H), 0.99 (d,
J = 6.8 Hz, 3H), 0.72 (d, J = 6.8 Hz, 3H); 13C NMR
(400 MHz, CDCl3) d 140.1, 139.9, 134.4, 128.8, 126.8,
126.3, 44.1, 32.6, 32.1, 30.9, 22.3, 21.7, 21.3, 21.1, 17.6; EI-
MS m/z 202 (10), 159 (100), 144 (9), 128 (16), 115 (9), 105
(7), 91 (6); IR (neat) cmꢀ1 1614, 1497, 1463, 1384, 1366,
1319, 880, 814.
20
25. Hydroxy-ester 18: mp 122–123 °C; ½aꢁD +85 (c 2, CHCl3).
20
Anal. Calcd for C16H22O3: C, 73.25; H, 8.45. Found: C,
32. (+)-cis-Calamenene 22: ½aꢁD +42.6 (c 1, CHCl3). Anal.
1
73.30; H, 8.40; H NMR (400 MHz, CDCl3) d 7.57 (br s,
Calcd for C15H22: C, 89.04; H, 10.96. Found: C, 89.20; H,
1
1H), 7.31 (br s, 1H), 5.32 (s, 1H), 3.89 (s, 3H), 3.24–3.12
(m, 1H), 2.81–2.72 (m, 1H), 2.51–2.38 (m, 1H), 1.80–1.60
(m, 4H), 1.24 (d, J = 7 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H),
0.68 (d, J = 6.9 Hz, 3H); 13C NMR (400 MHz, CDCl3)
168.0, 153.6, 141.7, 136.2, 127.6, 121.5, 112.8, 52.1, 43.4,
30.9, 28.4, 27.2, 20.9, 20.0, 17.2, 16.3; EI-MS m/z 262 (22),
231 (10), 219 (100), 187 (69), 160 (24), 145 (44), 131 (20),
115 (39), 105 (6), 91 (20); IR (nujol) cmꢀ1 3400, 1698,
1584, 1438, 1349, 1273, 1245, 1032, 773.
11.05; H NMR (400 MHz, CDCl3) d 7.03 (d, J = 7.8 Hz,
1H), 7.01 (s, 1H), 6.92 (d, J = 7.8 Hz, 1H), 2.90–2.80 (m,
1H), 2.63–2.51 (m, 1H), 2.29 (s, 3H), 2.31–2.20 (m, 1H),
1.87–1.55 (m, 4H), 1.25 (d, J = 7 Hz, 3H), 1.03 (d,
J = 6.8 Hz, 3H), 0.77 (d, J = 6.8 Hz, 3H); 13C NMR
(400 MHz, CDCl3) d 139.9, 139.7, 134.4, 128.7, 128.4,
126.3, 43.8, 32.6, 31.2, 28.9, 23.2, 21.4, 21.1, 20.1, 17.7; EI-
MS m/z 202 (10), 159 (100), 144 (9), 128 (15), 115 (9), 105
(7), 91 (5); IR (neat) cmꢀ1 1614, 1499, 1464, 1384, 1261,
1038, 880, 814.
20
26. (ꢀ)-trans-8-Hydroxycalamenene 19: ½aꢁD ꢀ37.9 (c 2,
CHCl3). Anal. Calcd for C15H22O: C, 82.52; H, 10.16.
Found: C, 82.60; H, 10.20; 1H NMR (400 MHz, CDCl3) d
6.59 (s, 1H), 6.44 (s, 1H), 4.54 (s, 1H), 3.08 (ddq, J = 2.1,
7, 6.7 Hz, 1H), 2.48 (ddd, J = 2.9, 5.8, 5.8 Hz, 1H), 2.25 (s,
3H), 2.07–1.94 (m, 2H), 1.91–1.73 (m, 2H), 1.52 (dm,
J = 13.4 Hz, 1H), 1.21 (d, J = 7.1 Hz, 3H), 0.99 (d,
J = 6.7 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H); 13C NMR
(400 MHz, CDCl3) d 153.1, 141.1, 135.0, 126.2, 122.9,
113.5, 43.2, 33.1, 27.4, 26.7, 22.0, 21.2, 21.0, 19.6, 19.4; EI-
33. (a) Bunko, J. D.; Ghisalberti, E. L.; Jefferies, P. R. Aust. J.
Chem. 1981, 34, 2237–2242; (b) Croft, K. D.; Ghisalberti,
E. L.; Hocart, C. H.; Jefferies, P. R.; Raston, C. L.; White,
A. H. J. Chem. Soc., Perkin Trans. 1 1978, 2, 1267–1270.
34. (+)-Menthone are available by oxidation of commercially
available (+)-menthol according to the procedure
described in Ref. 15. (ꢀ)-Isomenthone is available by
hydrogenation of (+)-piperitone; see for instance: Wagner,
H. Chem. Ber. 1941, 74, 657–660.