Azatantalacyclopentene Complexes
Organometallics, Vol. 24, No. 14, 2005 3553
ported but few with monocyclopentadienyl derivatives
of group 5 metals.5f,g These derivatives may participate
in the development of simple and general methods for
the synthesis of enantiomerically pure organic com-
pounds such as the following: (i) substituted pyrroles
by reaction with CO,7 (ii) racemic allylic amines from
simple amines and unfunctionalized alkynes,8 (iii) car-
bocyclic and heterocyclic rings,9 and (iv) cyclopentyl-
amines and unusual R-amino acids.10
Further, the broad success of early transition metal
based organic synthesis is due in part to the unique
ability of the metal to activate ligands to which it is
directly bound through organometallic transformations
that are often highly chemo-, regio-, and stereoselective
processes. In this context, zirconacycles9a,b,11 are avail-
able from simple organic precursors either by cocycliza-
tion of 1,n-dienes, enynes, and diynes using a zir-
conocene fragment or by trapping of metallocene η2-
alkene, -alkyne, and -benzyne complexes with alkenes
or alkynes. Methods for further elaboration of these
zirconacycles forming carbon-heteroatom bonds include
oxygenation, halogenation,12 and metathesis with a
variety of element-dihalides.13 Carbon-carbon bond
forming methods include carbonylation14 or, more re-
cently, tandem processes involving the insertion of
isocyanides and trapping of the resulting zirconocene
η2-imine complexes with unsaturated species.6p,r,10,15,16a
Further, the intermolecular addition of titanocene vi-
nylidene complexes to alkynes gives titanacyclobutenes,
which undergo an insertion-rearrangement with tert-
butyl isocyanide to afford allenylketenimines.16b
In group 5, niobium and tantalum alkyne com-
plexes17-20 have provided convenient routes to organic
products4b,c,6i,21 via metallacyclic intermediates.4a,22 Fur-
thermore, alkyne tantalum(III) derivatives react with
nitriles, leading to azatantalacyclopentene complexes
that may participate in an intermolecular isomerization
process to enamines.4c
We report herein the synthesis of alkyl azatantala-
cyclopentene derivatives, their reactivity with isocya-
nides, and the intramolecular rearrangement processes
observed in the resulting complexes. The X-ray molec-
ular structure of the complex [TaCp*Me2(CHCHCMe2-
NAr-κ2C,N)] (Cp* ) η5-C5Me5; Ar ) 2,6-Me2C6H3, 3) is
also described.
Results and Discussion
Synthesis of Alkyl Azatantalacyclopentene Com-
plexes. [TaCp*Cl2-xMex(CHCHCMe2NAr-κ2C,N)] (Cp*
(13) (a) Buchwald, S. L.; Fisher, R. A.; Foxman, B. M. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 771-772. (b) Spence, R. E. V. H.; Hsu, D. P.;
Buchwald, S. L. Organometallics 1992, 11, 3492-3493. (c) Fagan, P.
J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 1880-
1889. (d) Ura, Y.; Li, Y. Z.; Xi, Z. F.; Takahashi, T. Tetrahedron Lett.
1998, 39, 2787-2790.
(14) (a) Takahashi, T.; Kotora, M.; Kasai, K.; Suzuki, N.; Nakajima,
K. Organometallics 1994, 13, 4183-4185. (b) Barluenga, J.; Sanz, R.;
Fan˜anas, F. J. Chemistry, 1997, 3, 1324-1336. (c) Takahashi, T.; Huo,
S.; Hara, R.; Noguchi, Y.; Nakajima, K.; Sun, W.-H. J. Am. Chem. Soc.
1999, 121, 1094-1095.
(15) (a) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Synlett 1994,
111. (b) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Tetrahedron Lett.
1994, 35, 1445-1448.
(5) (a) Takahashi, Y.; Onoyama, N.; Ishikawa, Y.; Motojima, S.;
Sugiyama, K. Chem. Lett. 1978, 525-528. (b) Wolczanski, P. T.;
Bercaw, J. E. J. Am. Chem. Soc. 1979, 101, 6450-6452. (c) Chiu, K.
W.; Jones, R. A.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B. J.
Am. Chem. Soc. 1980, 102, 7979-7980. (d) Chiu, K. W.; Jones, R. A.;
Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc., Dalton
Trans. 1981, 2088-2097. (e) Guram, A. S.; Swenson, D. C.; Jordan, R.
F. J. Am. Chem. Soc. 1992, 114, 8991-8996. (f) Galakhov, M. V.;
Go´mez, M.; Jime´nez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A.
Organometallics 1995, 14, 1901-1910. (g) Castro, A.; Galakhov, M.
V.; Go´mez, M.; Go´mez-Sal, P.; Mart´ın, A.; Sa´nchez, F.; Velasco, P. Eur.
J. Inorg. Chem. 2000, 2047-2054.
(6) (a) Meyer, J. M.; Curtis, C. J.; Bercaw, J. E. J. Am. Chem. Soc.
1983, 105, 2651-2660. (b) Nugent, W. A.; Overall, D. W.; Holmes, S.
J. Organometallics 1983, 2, 161-162. (c) Nugent, W. A.; Calabrese, J.
C. J. Am. Chem. Soc. 1984, 106, 6422-6424. (d) Negishi, E.; Holmes,
S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568-
2569. (e) Negishi, E.; Swanson, D. R.; Cederbaum, F. E.; Takahashi,
T. Tetrahedron Lett. 1986, 27, 2829-2832. (f) Collman, J. P.; Hegedus,
L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of
Organotransition Metal Chemistry; University Science Books: Mill
Valley, CA, 1987. (g) Takahashi, T.; Swanson, D. R.; Negishi, E. Chem.
Lett. 1987, 623. (h) Nugent, W. A.; Thorn, D. L.; Harlow, R. L. J. Am.
Chem. Soc. 1987, 109, 2788-2796. (i) Roskamp, E. J.; Pedersen, S. F.
J. Am. Chem. Soc. 1987, 109, 3152-3154. (j) Jensen, M.; Livinghouse,
T. J. Am. Chem. Soc. 1989, 111, 4495-4496. (k) Durfee, L. D.; Hill, J.
E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1990, 9, 75-80. (l)
Coles, N.; Whitby, R. J.; Blagg, J. Synlett. 1990, 271-272. (m) Coles,
N.; Whitby, R. J.; Blagg, J. Synlett. 1992, 143-145. (n) Hill, J. E.;
Fanwick, P. E.; Rothwell, I. P. Organometallics 1992, 11, 1775-1777.
(o) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1992, 33, 4469-
4472. (p) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Tetrahedron
Lett. 1992, 33, 5655-5658. (q) Coles, N.; Harris, M. C. J.; Whitby, R.
J.; Blagg, J. Organometallics 1994, 13, 190-199. (r) Thorn, M. G.;
Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 4442-4447.
(7) Buchwald, S. L.; Wannamaker, M. W.; Watson, B. T. J. Am.
Chem. Soc. 1989, 111, 776-777.
(16) (a) Thorn, M. G.; Hill, J. E.; Waratuke, S. A.; Johnson, E. S.;
Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 8630-
8641. (b) Dennehy, R. D.; Whitby, R. J. J. Chem. Soc., Chem. Commun.
1992, 35-36.
(17) (a) Hartung, J. B., Jr.; Pedersen, S. F. Organometallics 1990,
9, 1414-1417. (b) Strickler, J. R.; Wigley, D. E. Organometallics 1990,
9, 1665-1669.
(18) (a) Curtis, M. D.; Real, J. Organometallics 1985, 4, 940-942.
(b) Curtis, M. D.; Real, J.; Kwon, D. Organometallics 1989, 8, 1644-
1651. (c) Gibson, V. C.; Kee, T. P.; Clegg, W. J. Chem. Soc., Dalton
Trans. 1990, 3199-3210. (d) Kwon, D.; Curtis, M. D. Organometallics
1990, 9, 1-5. (e) Curtis, M. D.; Real, J.; Hirpo, W.; Butler, W. M.
Organometallics 1990, 9, 66-74. (f) Poole, A. D.; Gibson, V. C.; Clegg,
W. J. Chem. Soc., Chem. Commun. 1992, 237-238. (g) Siemeling, U.;
Gibson, V. C. J. Organomet. Chem. 1992, 426, C25-C27. (h) Alcalde,
M. I.; de la Mata, J.; Go´mez, M.; Royo, P.; Pellinghelli, M. A.;
Tiripicchio, A. Organometallics 1994, 13, 462-467. (i) Hirpo, W.;
Curtis, M. D. Organometallics 1994, 13, 2706-2712. (j) Chan, M. C.
W.; Cole, J. M.; Gibson, V. C.; Howard, J. A. K.; Lehmann, C.; Poole,
A. D.; Siemeling, U. J. Chem. Soc., Dalton Trans. 1998, 103-111.
(19) (a) Etienne, M.; White, P. S.; Templeton, J. L. Organometallics
1991, 10, 3801-3803. (b) Etienne, M.; Zeline, P.; Templeton, J. L.;
White, P. S. New J. Chem. 1993, 17, 515. (c) Etienne, M.; Biasotto, F.;
Mathieu, R. J. Chem. Soc., Chem. Commun. 1994, 1661-1662. (d)
Etienne, M. Organometallics 1994, 13, 410-412. (e) Etienne, M. Coord.
Chem. Rev. 1996, 156, 201-236. (f) Etienne, M.; Donnadieu, B.;
Mathieu, R.; Ferna´ndez-Baeza, J.; Jalo´n, F.; Otero, A.; Rodrigo-Blanco,
M. E. Organometallics 1996, 15, 4597-4603. (g) Etienne, M.; Mathieu,
R.; Donnadieu, B. J. Am. Chem. Soc. 1997, 119, 3218-3228. (h) Jaffart,
J.; Mathieu, R.; Etienne, M.; McGrady, J. E.; Eisenstein, O.; Maseras,
F. Chem. Commun. 1998, 2011-2012. (i) Otero, A.; Ferna´ndez-Baeza,
J.; Tejeda, J.; Antin˜olo, A.; Carrillo-Hermosilla, F.; Diez-Barra, E.;
Lara-Sa´nchez, A.; Ferna´ndez-Lo´pez, M.; Lanfranchi, M.; Pellinghelli,
M. A. J. Chem. Soc., Dalton Trans. 1999, 3537-3540.
(8) Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem.
Soc. 1991, 113, 2321-2322.
(9) (a) Broene, R. D.; Buchwald, S. L. Science 1993, 261, 1696. (b)
Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124-130. (c)
Uesaka, N.; Mori, M.; Okamura, K.; Date, T. J. Org. Chem. 1994, 59,
4542-4547. (d) Kemp, M. L.; Whitby, R. J.; Coote, S. J. Synlett. 1994,
451.
(10) (a) Probert, G. D.; Whitby, R. J.; Coote, S. J. Tetrahedron Lett.
1995, 36, 4113-4116. (b) Gordon, G. J.; Luker, T.; Tuckett, M. W.;
Whitby, R. J. Tetrahedron 2000, 56, 2113-2129.
(11) (a) Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047-
1058. (b) Negishi, E. I. Comprehensive Organic Syntheses; Trost, B.
M., Fleming, I., Eds.; Pergamon: Oxford, UK, 1991; Vol. 5, p 1163.
(12) (a) Tidwell, J. H.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116,
11797-11810. (b) Xi, C. J.; Huo, S. Q.; Afifi, T. H.; Hara, R.; Takahashi,
T. Tetrahedron Lett. 1997, 38, 4099-4102.
(20) Galindo, A.; Go´mez, M.; Go´mez-Sal, P.; Mart´ın, A.; del Rio, D.;
Sa´nchez, F. Organometallics 2002, 21, 293-304.
(21) Buchwald, S. L.; Watson, B. T.; Lum, R. T.; Nugent, W. A. J.
Am. Chem. Soc. 1987, 109, 7137-7141.
(22) Doxsee, K. M.; Farahi, J. B. J. Am. Chem. Soc. 1988, 110, 7239-
7240.