extension of the present method. Because the Claisen condensation
of a,a-dialkylated esters is very difficult, the present method
provide a new avenue for the preparation of inaccessible
b-ketoesters.{
We thank Kuraray Co. Limited, for generous gift of methyl
dichlorovinylcrysanthemate.
Akira Iida, Kenta Takai, Tomohito Okabayashi, Tomonori Misaki and
Yoo Tanabe*
Department of Chemistry, School of Science and Technology, Kwansei
Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
E-mail: tanabe@kwansei.ac.jp; Fax: (+81)79-565-9077;
Tel: (+81)79-565-8394
Notes and references
{ Typical procedure: [(1-Methoxy-2-methyl-1-butenyl)oxy]trimethylsilane
(452 mg, 2.40 mmol) was added to a stirred solution of methyl decanoate
(186 mg, 1.0 mmol) and NaOH (crushed powder prepared under dry
atmosphere; 2 mg, 0.05 mmol) in DMF (0.2 cm3) at 15–20 uC under an Ar
atmosphere, and the reaction mixture was stirred at that temperature for
1 h. Water was added to the reaction mixture, which was extracted with
ether. The organic phase was washed with water, brine, dried (Na2SO4) and
concentrated. The obtained crude product was purified by silica-gel column
chromatography (hexane:ether 5 30:1 y 100:1) to give methyl 2,2-
dimethyl-3-(trimethylsiloxyl)dodec-3-enoate (A) (colorless oil, 270 mg, 82%)
and methyl 2,2-dimethyl-3-oxododecanoate (B) (colorless oil, 44 mg, 17%).
See ESI for NMR data.
Scheme 3
Table 3 Ti-Aldol reactions of crossed Claisen adduct 9A and 9B with
aldehydes
Method A (Mukaiyama Aldol Reaction)a
1 (a) For example, M. B. Smith and J. March, Advanced Organic
Chemistry, Benjamin, New York, 5 th edn., 2001, p. 569; (b) K. P.
C. Vollhardt and N. E. Schore, Organic Chemistry, 3rd edn., Freeman,
New York, 1999, p. 1039; (c) J. Clayden, N. Greeves, S. Warren and
P. Wothers, Organic Chemistry, Oxford University, New York, 2001,
p. 726.
Method B (Ti - Direct Aldol Reaction)b
2 (a) Y. Tanabe, Bull. Chem. Soc. Jpn., 1989, 62, 1917; (b) Y. Yoshida,
R. Hayashi, H. Sumihara and Y. Tanabe, Tetrahedron Lett., 1997, 38,
8727; (c) Y. Yoshida, N. Matsumoto, R. Hamasaki and Y. Tanabe,
Tetrahedron Lett., 1999, 40, 4227; (d) R. Hamasaki, S. Funakoshi,
T. Misaki and Y. Tanabe, Tetrahedron, 2000, 56, 7423; (e) Y. Tanabe,
R. Hamasaki and S. Funakoshi, Chem. Commun., 2001, 1674; (f)
Y. Tanabe, A. Makita, S. Funakoshi, R. Hamasaki and T. Kawakusu,
Adv. Synth. Catal., 2002, 507; (g) Y. Tanabe, N. Manta, R. Nagase,
T. Misaki, Y. Nishii, M. Sunagawa and A. Sasaki, Adv. Synth. Catal.,
2003, 345, 967; (h) Y. Hashimoto, H. Konishi and S. Kikuchi, Synlett,
2004, 1264.
Entry R1
R2
Method Product Yieldc (%) syn:antid
1
2
3
4
5
6
a
Octyle Ph
A
B
A
B
A
B
73
78
80
83
67
80
93:7
93:7
72:28
.99:1
25:75
2:98
Pentyl
BnOf Ph
3 T. Misaki, R. Nagase, K. Matsumoto and Y. Tanabe, J. Am. Chem.
Soc., 2005, 127, 2854.
4 (a) M. W. Rathke and D. F. Sullivan, Tetrahedron Lett., 1973, 15, 1297;
(b) M. H. Stefaniak, Synlett, 1997, 677.
In CH2Cl2, 245 to 250 uC for
1
h. Molar ratio;
b
5 (a) H. Fujisawa and T. Mukaiyama, Chem. Lett., 2002, 182; (b)
H. Fujisawa and T. Mukaiyama, Chem. Lett., 2002, 858; (c)
T. Mukaiyama and H. Fujisawa, Helv. Chim. Acta, 2002, 85, 4518.
6 (a) Y. Tanabe, N. Matusmoto, S. Funakoshi and N. Manta, Synlett,
2001, 1959; (b) Y. Tanabe, N. Matsumoto, T. Higashi, T. Misaki, T. Itoh,
M. Yamamoto, K. Mitarai and Y. Nishii, Tetrahedron, 2002, 58, 8269; (c)
Y. Tanabe, K. Mitarai, T. Higashi, T. Misaki and Y. Nishii, Chem.
Commun., 2002, 2542.
7 (a) D. A. Evans, F. Urpi, T. C. Somers, J. S. Clark and M. T. Bilodeau,
J. Am. Chem. Soc., 1990, 112, 8215; (b) D. A. Evans, D. L. Rieger,
M. T. Bilodeau and F. Urpi, J. Am. Chem. Soc., 1991, 113, 1047; (c)
D. A. Evans, J. S. Clark, R. Metternich, V. J. Novack and
G. S. Sheppard, J. Am. Chem. Soc., 1990, 112, 866.
9A:aldehydes:TiCl4 5 1.0:1.2:1.2. In CH2Cl2, 0–5 uC for 2 h.
Molar ratio; 9B:aldehydes:TiCl4:Bu3N 5 1.0:1.2:1.2:1.4. Isolated.
c
d
e
f
Determined by 1H-NMR. 9A (E:Z 5 1:.99) was used. 9A
(E:Z 5 5:95) was used.
the syn mechanism utilizes the conventional six-membered chair
transition state, whereas the anti mechanism utilizes a benzoyloxy-
coordination boat mechanism (See ESI{).
In conclusion, we developed a new mild, catalytic, practical and
efficient method for preparing various b-ketoesters using a-mono
or a,a-dialkylated KSAs and catalytic NaOH. Further functiona-
lization utilizing two Ti-aldol reactions demonstrates a notable
8 J. Otera, Y. Fujita and S. Fukuzumi, Synlett, 1994, 213.
9 C. R. Hauser and W. B. Renfrow, Jr., J. Am. Chem. Soc., 1937, 59, 1823.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 3171–3173 | 3173