5012
K. Sakaguchi et al. / Tetrahedron Letters 46 (2005) 5009–5012
3H), 3.33 (d, J = 9.2 Hz, 1H), 2.97 (dqd, J = 9.2, 6.8,
6.8 Hz, 1H), 1.08 (d, J = 6.8, 3H), 0.83 (s, 9H), 0.01 (s,
3H), ꢁ0.02 (s, 3H).
(E)-vinylsilanes. The products completely retained the
optical purity of the starting materials. Thus, a novel
chiral a- or c-silyl cation species was trapped as a p-allyl
palladium intermediate. Further studies using the pres-
ent chirality-transferring carbon–carbon bond forming
reaction are in progress.
7. (a) Trost, B. M.;Verhoeven, T. R. J. Am. Chem. Soc.
1980, 102, 4730–4743;(b) Frost, C. G.;Howarth, J.;
Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089–
1122.
8. According to the MP2/6-31G*//3-21G calculations, car-
bocation a to the SiH3 group is 18.3 kcal/mol less stable
than the corresponding carbocation a to a methyl group.2a
9. As a control experiment, the reaction of (R,Z)-1 (>95% ee)
using method B without carbon nucleophile resulted in a
formation of 1-TBDMS-1,3-butadiene with a recovery of
(R,Z)-1 (>95% ee). This also suggests the present reaction
proceeds through a p-allyl palladium(II) intermediate in
Scheme 3.
10. The (R,Z)-a-acyloxysilane 1 (>95% ee) was converted to
(S,E)-vinylsilane 2 (>95% ee) via Pd(II)-catalyzed allylic
rearrangement in two steps (67%) by PanekÕs protocol:
Panek, J. S.;Sparks, M. A. J. Org. Chem. 1990, 55, 5564–
5566.
Acknowledgements
We thank a referee for a useful suggestion about the
reaction mechanism. This study was financially sup-
ported by a Grant-in-Aid for Scientific Research from
the Ministry of Education, Culture, Sports, Science,
and Technology, Japan, and a Grant from Suntory
Institute for Bioorganic Research (SUNBOR).
Supplementary data
11. Kurosawa, H.;Kajimaru, H.;Ogoshi, S.;Yoneda, H.;
Miki, K.;Kasai, N.;Murai, S.;Ikeda, I.
Soc. 1992, 114, 8417–8424.
J. Am. Chem.
Supplementary data associated with this article can be
12. Intramolecular Pd-catalyzed allylic alkylation, see: (a)
Trost, B. M.;Verhoeven, T. R. J. Am. Chem. Soc. 1980,
102, 4743–4763;(b) Takahashi, T.;Jinbo, Y.;Kitamura,
K.;Tsuji, J. Tetrahedron Lett. 1984, 25, 5921–5924;(c)
Yamamoto, K.;Deguchi, R.;Ogimura, Y.;Tsuji, J. Chem.
Lett. 1984, 1657–1660;(d) Trost, B. M. Angew. Chem., Int.
Ed. Engl. 1989, 28, 1173–1192;(e) Heumann, A.;Reglier,
M. Tetrahedron 1995, 51, 975–1015.
References and notes
1. (a) Sakaguchi, K.;Mano, H.;Ohfune, Y.
Tetrahedron
Lett. 1998, 39, 4311–4312;(b) Sakaguchi, K.;Fujita, M.;
Ohfune, Y. Tetrahedron Lett. 1998, 39, 4313–4316;(c)
Sakaguchi, K.;Fujita, M.;Suzuki, H.;Higashino, M.;
Ohfune, Y. Tetrahedron Lett. 2000, 41, 6589–6592;(d)
Sakaguchi, K.;Suzuki, H.;Ohfune, Y. Chirality 2001, 13,
357–365;(e) Morimoto, Y.;Takanishi, M.;Kinoshita, T.;
Sakaguchi, K.;Shibata, K. Chem Commun. 2002, 42–43;
(f) Sakaguchi, K.;Yamamoto, M.;Kawamoto, T.;Yam-
24
13. (S)-4: ½aꢀD ꢁ32.7 (c 0.64, CHCl3, 87% ee); 1H NMR
(400 MHz, CDCl3) d 6.25 (dd, J = 18.6, 8.5 Hz, 1H), 5.63
(d, J = 18.6 Hz, 1H), 3.67 (s, 3H), 3.66 (s, 3H), 2.78 (dt,
J = 12.0, 4.0 Hz, 1H), 2.15 (m, 1H), 1.97 (m, 1H), 1.80 (m,
1H), 2.78–1.53 (2H), 1.50–1.34 (3H), 0.84 (s, 9H), ꢁ0.01
18
(s, 3H), ꢁ0.03 (s, 3H). (S)-8: ½aꢀD ꢁ59.1 (c 1.51, CHCl3,
88% ee); 1H NMR (400 MHz, CDCl3) d 5.96 (dd, J = 18.6,
7.3 Hz, 1H), 5.71 (dd, J = 18.6, 1.2 Hz, 1H), 3.72 (s, 3H),
3.62 (s, 3H), 3.29 (dt, J = 7.2, 7.2 Hz, 1H), 2.47 (dt,
J = 13.7, 8.3 Hz, 1H), 2.08 (ddd, J = 13.8, 9.0, 4.8 Hz, 1H),
1.99–1.81 (2H), 1.75–1.50 (2H), 0.84 (s, 9H), ꢁ0.02 (s,
6H).
ada, T.;Shinada, T.;Shimamoto, T.;Ohfune, Y.
hedron Lett. 2004, 45, 5869–5872.
Tetra-
2. Several reports regarding the stability of a-silyl cation, see:
(a) Apeloig, Y.;Stanger, A. J. Am. Chem. Soc. 1985, 107,
2806–2807;(b) Soderquist, J. A.;Hassner, A. Tetrahedron
Lett. 1988, 29, 1899–1902;(c) Apeloig, Y.;Biton, R.;
bu-Freih, A. J. Am. Chem. Soc. 1993, 115, 2252–2253.
3. Sakaguchi, K.;Higashino, M.;Ohfune, Y. Tetrahedron
2003, 59, 6647–6658.
4. Reviews for Pd-catalyzed allylic alkylations, see: (a) Trost,
B. M.;Verhoeven, T. R. In Comprehensive Organometallic
Chemistry;Pergamon Press, 1982;Vol. 8, p 799;(b)
Godleski, S. A. In Comprehensive Organic Synthesis;
Pergamon Press, 1999;Vol. 4, p 585;(c) Tsuji, J. Palladium
Reagent and Catalysts;John Wiley & Sons: Chichester,
2004, p 431.
14. The reaction using a carbonate instead of acetate without
a base under the same conditions did not proceed at all,
while heating under reflux for 7 h gave diene 5 (34%). The
use of 2 equiv of NaH gave a mixture of 4 (24%) and 5
(10%) when heated under reflux for 7 h.
15. The use of DPPE, DPPB, or DPPF gave 4 in 44%, 46%,
and 38%, respectively. On the other hand, P(n-Bu)3,
P(Cy)3, PMe2Ph, P(o-tol)3, AsPh3, or DPPP by-produced
the diene 5.
16. The reaction of 3b using Pd(PPh3)4 and PPh3 without a
base (THF, reflux, 14 h) gave the diene 5 in 92% yield;
however, the reaction using Pd2(dba)3–CHCl3 (0.05 equiv)
and PMePh2 (0.05 equiv) (DMF, 100 °C, 19 h) gave 5
(32%) with recovery of 3b (56%).
17. Using DMF as the solvent, the reaction of 3b with
Pd(PPh3)4 (0.1 equiv) and PPh3 (0.1 equiv) instead of
Pd2(dba)3–CHCl3 and PMePh2 gave 4 (72%) as the sole
product.
5. Pd-catalyzed allylic alkylation of silicon-containing sub-
strate, see: (a) Hirao, T.;Enda, J.;Ohshiro, Y.;Agawa, T.
Tetrahedron Lett. 1981, 22, 3079–3080;(b) Commandeur,
C.;Thorimbert, S.;Malacria, M. J. Org. Chem. 2003, 68,
5588–5592.
20
6. (R)-2: ½aꢀD ꢁ19.3 (c 1.14, CHCl3, 90% ee, from (R,E)-1);
20
½aꢀD ꢁ25.9 (c 1.05, CHCl3, >95% ee, from (R,Z)-1); 1H
NMR (300 MHz, CDCl3) d 5.93 (dd, J = 18.6, 7.4 Hz,
1H), 5.70 (dd, J = 18.6, 0.8 Hz, 1H), 3.72 (s, 3H), 3.67 (s,
18. Trace amounts of diene were detected from the crude
product by H NMR.
1