Angewandte
Chemie
[4] D. Davyt, W. Entz, R. Fernandez, R. Mariezcurrena, A. W.
coupling partner. The reaction proceeds smoothly even in the
presence of sensitive functional groups such as esters, ethers,
ketones, halides, or silanes. For most substrates, the E
products were obtained in an isomeric ratio greater than
20:1, and only imides gave only moderate yields and
selectivities; primary amides could not be converted.
The Z-selective protocol was also successfully applied to
selected substrates (Table 2, first row). Although this protocol
does not yet reach the selectivity of its E-selective counter-
part, the examples 5a and 5b demonstrate that the stereo-
selectivity of the reaction can indeed be inverted by modify-
ing the ligand system.
In summary, a ruthenium-catalyzed reaction has been
developed that allows, for the first time, the anti-Markovni-
kov addition of secondary amides, anilides, lactams, ureas,
bislactams, and carbamates to terminal alkynes. Two comple-
mentary protocols have been identified that provide stereo-
selective synthetic entries to either the E or the Z isomers.
Due to the mild reaction conditions, the excellent availability
of the starting materials, and the ideal atom economy, this
new transformation is well-suited for applications in synthetic
organic chemistry and drug discovery.
Mombru, J. Saldana, L. Dominguez, J. Coll, E. Manta, J. Nat.
Prod. 1998, 61, 1560 – 1563.
[5] “N-Vinylamide polymers”: D. H. Lorenz, Encycl. Polym. Sci.
Technol. 1971, 14, 239 – 251.
[6] a) A. R. Katritzky, B. Rachwal, S. Rachwal, J. Org. Chem. 1995,
60, 3993 – 4001; b) A. Charles, M. B. Smith, J. Org. Chem. 1988,
53, 1161 – 1167; c) L. E. Overman, L. A. Clizbe, J. Am. Chem.
Soc. 1976, 98, 2352 – 2354.
[7] C. Gaulon, R. Dhal, T. Chapin, V. Maisonneuve, G. Dujardin, J.
Org. Chem. 2004, 69, 4192 – 4202.
[8] G. J. Roff, R. C. Lloyd, N. J. Turner, J. Am. Chem. Soc. 2004, 126,
4098 – 4099.
[9] C. E. Wilians, C. A. Mulder, J. G. de Vries, H. M. de Vries, J.
Organomet. Chem. 2003, 687, 494 – 497.
[10] R. Matsubara, Y. Nakamura, S. Kobayashi, Angew. Chem. 2004,
116, 1711 – 1713; Angew. Chem. Int. Ed. 2004, 43, 1679 – 1681.
[11] a) T. Sell, A. Meiswinkel, G. Mehler, M. T. Reetz, Tetrahedron
Lett. 2002, 43, 7941 – 7943; b) M. van den Berg, A. J. Minnaard,
R. M. Haak, M. Leeman, E. P. Schudde, A. Meetsma, B. L.
Feringa, H. M. de Vries, E. P. Maljaars, C. E. Wilians, D. Hyett,
A. F. Boogers, J. W. Hendricks, J. G. de Vries, Adv. Synth. Catal.
2003, 345, 308 – 323.
[12] W. Adam, S. G. Bosio, N. J. Turro, J. Org. Chem. 2004, 69, 1704 –
1715.
[13] M. J. Burk, G. Casy, N. B. Johnson, J. Org. Chem. 1998, 63, 6084 –
6098.
[14] X. Pa, Q. Cai, D. Ma, Org. Lett. 2004, 6, 1809 – 1812.
[15] J. Wallace, D. J. Klauber, C. Chen, R. P. Volante, Org. Lett. 2003,
5, 4749 – 4752.
[16] J. L. Brice, J. E. Meerdink, S. Stahl, Org. Lett. 2004, 6, 1845 –
1848.
[17] a) H. Doucet, Z. Kabouche, C. Bruneau, P. H. Dixneuf, J.
Organomet. Chem. 1997, 551, 151 – 157; b) T. Mitsudo, Y. Hori,
Y. Watanabe, J. Org. Chem. 1985, 50, 1566 – 1568; c) L. J.
Gooßen, J. Paetzold, Chem. Commun. 2003, 706 – 707.
[18] a) M. Bassetti, B. Floris, J. Chem. Soc. Perkin Trans. 2 1988, 227 –
233; b) T. Suzuki, T. Makoto, y. Wakatsuki, Org. Lett. 2001, 3,
735 – 737.
[19] a) F. Pholki, S. Doye, Chem. Soc. Rev. 2003, 32, 104 – 114; b) M.
Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116,
3448 – 3479Angew. Chem. Int. Ed. 2004, 43, 3368 – 3398.
[20] For a recent review, see: F. Alonso, I. P. Beletskaya, M. Yus,
Chem. Rev. 2004, 104, 3079 – 3159.
[21] a) For related reactions with acetylene, see: W. Reppe, Justus
Liebigs Ann. Chem. 1956, 601, 81 – 138; b) Rohm&Haas Co., US
2806847, 1955; Rohm&Haas Co. , US 2606848, 1956 [Chem.
Abstr. 1958, 52, 16059]; c) M. Heider, J. Henkelmann, T. Ruel
(BASF AG), DE 4333237, 1995 [Chem. Abstr. 1995, 123,
229254].
[22] T. Kondo, A. Tanaka, S. Kotachi, Y. Watanabe, J. Chem. Soc.
Chem. Commun. 1995, 413 – 414.
[23] C. Brehm, Y. Cancho-Grande, A. Fꢀrstner, Org. Lett. 2001, 3,
3955 – 3957.
Experimental Section
4a: An oven-dried flask was charged with [Ru(methallyl)2(cod)]
(6.4 mg, 0.02 mmol) and DMAP (4.99 mg, 0.04 mmol), and flushed
with argon. Subsequently, PnBu3 (15 mL, 0.06 mmol), 2-pyrrolidinone
(2a; 85.1 mg, 1 mmol), 1-hexyne (1a; 229 mL, 2.0 mmol), and dry
toluene (3.0 mL) were added with a syringe. The resulting green
solution was stirred for 15 h at 1008C, then poured into an aqueous
NaHCO3 solution (30 mL). The resulting mixture was extracted
repeatedly with 20 mL portions of ethyl acetate, the combined
organic layers were washed with water and brine, dried with MgSO4,
and filtered, and the volatiles were removed in vacuo. The residue was
purified by column chromatography (SiO2, ethyl acetate/hexanes 3:1)
to yield 4a (158.9 mg, 95% yield, 97% isomeric purity) as a colorless
oil.
1H NMR (300.1 MHz, CDCl3): d = 6.86 (d, 3J = 14.7 Hz, 1H), 4.92
3
3
3
(dt, J = 14.7 Hz, 7.2 Hz, 1H), 3.48 (t, J = 7.2 Hz, 2H), 2.46 (t, J =
3
8.1 Hz, 2H), 2.01–2.14 (m, 4H), 1.24–1.39 (m, 4H), 0.88 ppm (t, J =
7.2 Hz, 3H); 13C NMR (75.5 MHz, CDCl3): d = 172.2, 123.6, 112.5,
45.3, 32.3, 31.3, 29.7, 22.1, 17.4, 13.9 ppm; MS (EI, 70 eV): m/z (%):
167 (20), 124 (100) [M]+, 86 (23), 69 (12), 41 (21); HRMS (EI): calcd
for C10H17NO: 167.131014; found: 167.130871.
The experiments in Table 2 were carried out analogously. All
products were purified by column chromatography and characterized
by NMR spectroscopy and standard/high-resolution mass spectrom-
etry.
Received: December 7, 2004
Revised: March 24, 2005
Published online: May 27, 2005
Keywords: alkynes · amides · enamides ·
.
homogeneous catalysis · hydroamidation · ruthenium
[1] L. Yet, Chem. Rev. 2003, 103, 4283 – 4306.
[2] Y. N. Han, G.-Y. Kim, H. K. Han, B. H. Han, Arch. Pharmacol.
Res. 1993, 16, 289.
[3] S. G. Toske, P. R. Jensen, C. A. Kaufman, W. Fenical, Tetrahe-
dron 1998, 54, 13459 – 13466.
Angew. Chem. Int. Ed. 2005, 44, 4042 –4045
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4045