P. Kirsch, A. Hahn
FULL PAPER
Mol. Cryst. Liq. Cryst. 2000, 346, 29–33; c) P. Kirsch, M.
Bremer, A. Taugerbeck, T. Wallmichrath, Angew. Chem. 2001,
113, 1528–1532; Angew. Chem. Int. Ed. 2001, 40, 1480–1484.
[8] a) P. Kirsch, M. Bremer, Angew. Chem. 2000, 112, 4384–4405;
Angew. Chem. Int. Ed. 2000, 39, 4216–4235; b) M. Bremer, S.
Naemura, K. Tarumi, Jpn. J. Appl. Phys. 1998, 37, L88–L90.
[9] Dielectric anisotropy is defined as Δε = ε|| – εЌ and birefrin-
gence as Δn = n|| – nЌ, where || represents the orientation paral-
lel and Ќ perpendicular to the nematic phase director, which
are approximated by the molecular orientation axis and the
long molecular axis, respectively. The correlation between Δε,
the molecular dipole moment μ and the angle β between the
dipole and the orientation axis is given by: Δε ∝ Δα –
F(μ2/2kBT)(1 – 3cos2β)S, where Δα is the anisotropy of the po-
larizability, F the reaction field factor and S the order parame-
ter: a) W. Maier, G. Meier, Z. Naturforsch. 1961, 16A, 262–267;
b) D. Demus, G. Pelzl, Z. Chem. 1982, 21, 1; c) J. Michl, E. W.
Thulstrup, Spectroscopy with Polarized Light: Solute Alignment
by Photoselection, in Liquid Crystals, Polymers, and Membranes,
VCH, Weinheim, 1995, pp. 171–221.
mine (1.0 mL, 19.5 mmol) in CH2Cl2 (10 mL). The orange mixture
was stirred at –70 °C for 1 h, and then it was allowed to warm to
–10 °C and poured into ice-cold 2 n NaOH. The organic phase was
separated and the aqueous phase was extracted again with CH2Cl2.
The combined organic phases were dried with Na2SO4, filtered and
the solvents evaporated to dryness. The tar-like crude product was
twice subjected to chromatography through a short silica gel col-
umn using n-heptane as eluent and crystallized from n-heptane at
–20 °C to yield 5 (120 mg, 7%) as colorless crystals, m.p. 50 °C,
1
nematic to 101.9 °C, isotropic (purity 99.0% by HPLC). H NMR
(300 MHz, CDCl3, 303 K): δ = 0.87 (t, J = 7.2 Hz, 3 H), 0.90–1.42
(m, 15 H), 1.69–1.87 (m, 6 H), 1.95–2.08 (m, 3 H), 7.00–7.06 (m,
2 H, Ar-H), 7.70 (t, J = 8.3 Hz, 1 H, Ar-H) ppm. 19F NMR
(235 MHz, CDCl3, 300 K; standard CFCl3): δ = –105.6 to –105.1
(m, 1 F, Ar-F), –79.2 (d, J = 8.6 Hz, 2 F, CF2O), 68.4 (ddd, J =
150.8, J = 24.6, J = 3.4 Hz, 4 F, SFeq), 81.5 (quint, J = 150.8 Hz,
1 F, SFax; an additional, insufficiently resolved fine structure is
underlying the quint) ppm. MS (EI, 70 eV): m/z (%) = 494 (22)
[M+], 475 (9), 256 (34), 125 (45), 111 (26), 83 (67), 69 (100).
[10] a) M. P. Greenhall, 15th International Symposium on Fluorine
Chemistry, Vancouver, Canada, Aug. 2–7, 1997, presentation
FRx C-2; b) R. D. Bowden, M. P. Greenhall, J. S. Moillet, J.
Thomson, WO 97/05106, 1997 [Chem. Abstr. 1997, 126,
199340].
Acknowledgments
[11] Disulfides 7a and 7b were prepared by procedures analogous
to those described in: a) E. A. Kuo, P. T. Hambleton, D. P. Kay,
P. L. Evans, S. S. Matharu, E. Little, N. McDowall, C. B. Jones,
C. J. R. Hedgecock, C. M. Yea, A. W. E. Chan, P. W. Hairsine,
I. R. Ager, W. R. Tully, R. A. Williamson, R. Westwood, J.
Med. Chem. 1996, 39, 4608–4621; b) A. McKillop, D.
Koyunçu, A. Krief, W. Dumont, P. Renier, M. Trabelsi, Tetra-
hedron Lett. 1990, 31, 5007–5010.
We thank J. Haas, H. Heldmann and K. Altenburg for the physical
characterization of the new compounds, and Dr. M. Bremer for
valuable advice on the quantum chemical calculations.
[1] a) W. A. Sheppard, J. Am. Chem. Soc. 1960, 82, 4751–4752; b)
W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3064–3071; c)
W. A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3072–3076.
[2] For reviews on pentafluoro-λ6-sulfanyl derivatives, see: a) D.
Lentz, K. Seppelt in Chemistry of Hypervalent Compounds
(Ed.: K. Akiba), Wiley, New York, 1999, chapter 10, p. 295; b)
R. Winter, G. L. Gard in Inorganic Fluorine Chemistry:
Towards the 21st Century (Eds.: J. S. Thrasher, S. H. Strauss),
ACS Symposium Series 555, Washington DC, 1994, p. 128.
[3] a) A. M. Sipyagin, C. P. Bateman, Y.-T. Tan, J. S. Thrasher, J.
[12] The “virtual” parameters TNI,virt, Δεvirt and Δnvirt were deter-
mined by linear extrapolation from a 10% w/w solution in the
commercially available Merck mixture ZLI-4792 (TNI
=
92.8 °C, Δε = 5.3, Δn = 0.0964). The extrapolated values were
corrected empirically for differences in the order parameter
which are induced by the analyte. For the pure substances, the
melting points were identified by differential scanning calorim-
etry (DSC) and the phases by optical polarization microscopy.
Fluorine Chem. 2001, 112, 287–295; b) A. M. Sipyagin, S. V. [13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
Enshov, S. A. Kashtanov, C. P. Bateman, B. D. Mullen, Y.-T.
Tan, J. S. Thrasher, J. Fluorine Chem. 2004, 125, 1305–1316.
[4] a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis Reac-
tivity, Applications, Wiley-VCH, Weinheim, 2004, p. 146; b)
H. W. Kim, P. Rossi, R. K. Shoemaker, S. G. DiMagno, J. Am.
Chem. Soc. 1998, 120, 9082–9083.
[5] a) J. E. D. Barton, G. Mitchell (Zeneca Ltd), GB 2276379, 1994
[Chem. Abstr. 1995, 123, 82948]; b) P. J. Crowley, G. Mitchell,
R. Salmon, P. A. Worthington, Chimia 2004, 58, 138–142.
[6] a) R. W. Winter, R. Dodean, L. Holmes, G. L. Gard, J. Fluor-
ine Chem. 2004, 125, 37–41; b) R. Winter, P. G. Nixon, R. J.
Terjeson, J. Mohtasham, N. R. Holcomb, D. W. Grainger, D.
Graham, D. G. Caster, G. L. Gard, J. Fluorine Chem. 2002,
115, 107; c) R. Winter, P. G. Nixon, G. L. Gard, D. G. Castner,
N. R. Holcomb, Y.-H. Hu, D. W. Grainger, Chem. Mater. 1999,
11, 3044; d) J. C. Hansen, P. M. Savu, US 5159105, 1992
[Chem. Abstr. 1992, 116, 58727].
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont-
gomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson,
P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rab-
uck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Or-
tiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komar-
omi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Re-
plogle, J. A. Pople, Gaussian98 (Revision A.6), Gaussian, Inc.,
Pittsburgh, PA, 1998. The geometries were optimized at the
B3LYP/6-31+G(d) level of theory, the minima only have posi-
tive eigenfrequencies, the transition states have one negative
eigenfrequency. The energies were calculated at the B3LYP/6-
311+G(2d,p) level of theory using the B3LYP/6-31+G(d)-de-
rived geometries and zero-point energies.
[7] a) P. Kirsch, M. Bremer, M. Heckmeier, K. Tarumi, Angew.
Chem. 1999, 111, 2174–2178; Angew. Chem. Int. Ed. 1999, 38,
1989–1992; b) P. Kirsch, M. Bremer, M. Heckmeier, K. Tarumi,
Received: February 18, 2005
3100
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 3095–3100