C O M M U N I C A T I O N S
Table 1. Synthesis of Fused Pyrrolecarboxylates 7
Ethynylferrocene was employed as a teminal alkyne component to
afford 7ga in 52% yield (run 7), and its structure was unambigu-
ously established by X-ray crystallographic analysis (see Supporting
Information). In addition to N-phenylmaleimide, maleic anhydride
can be used as a dienophile in the second step to afford 7bb in
52% yield (run 8). On the other hand, the use of 1,4-naphthoquinone
led to the formation of 7fc possessing both pyrrole and naphtho-
quinone rings albeit in lower yield of 35% (run 9). The formation
of 7fc can be considered as a result of the double dehydrogenation
under the influence of the iridium species.
In conclusion, we successfully established the novel domino-
coupling relay approach to polycyclic pyrrole-2-carboxylates
through the Cu-catalyzed Mannich condensation of N-benzylally-
lamine, ethyl glyoxalate, and terminal alkynes, and the Ir-catalyzed
cycloisomerization/Diels-Alder reaction/dehydrogenative aroma-
tization of the resultant glycinate-tethered 1,6-enynes.
Acknowledgment. This research was partially supported by the
MEXT, Grant-in-Aid for Young Scientists (A) (17685008), and
Scientific Research on Priority Area “Creation of Biologically
Functional Molecules” (17035038). We gratefully acknowledge
financial support from the Tokuyama Science Foundation.
Supporting Information Available: Experimental procedure and
analytical data for products (CIF, PDF). This material is available free
References
(1) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell: Oxford,
2000.
(2) (a) Tumlinson, J. H.; Silverstein, R. M.; Moser, J. C.; Brownlee, R. G.;
Ruth, J. Nature 1971, 234, 348. (b) Boger, D. L.; Boyce, C. W.; Labroli,
M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54-62 and
references therein.
(3) Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature 1996, 382, 559-561.
(4) Chakraborty, T. K.; Mohan, B. K.; Kumar, S. K.; Kunwar, A. C.
Tetrahedron Lett. 2002, 43, 2589-2592.
(5) (a) Balme, G. Angew. Chem., Int. Ed. 2004, 43, 6238-6241. (b) Tejedor,
D.; Gonza´lez-Cruz, D.; Garc´ıa-Tellado, F.; Marrero-Tellado, J. J.; Rod-
r´ıguez, M. L. J. Am. Chem. Soc. 2004, 126, 8390-8391. (c) Dhawan, R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-469.
(6) (a) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471-1499. (b) Zhu, J.
Eur. J. Org. Chem. 2003, 1133-1144. (c) Barluenga, J.; Ferna´ndez-
Rodr´ıguez, M. A.; Aguilar, E. J. Organomet. Chem. 2005, 690, 539-
587. (d) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602-
1634. (e) Tietze, L. F. Chem. ReV. 1996, 96, 115-136. (f) Trost, B. M.
Science 1991, 254, 1471-1476.
of 3b and the maleimide was formed, but the following structural
analyses revealed that the obtained product is fused pyrrolecar-
boxylate 7ba. In its 1H NMR spectrum, a singlet peak of the pyrrole
proton R to the nitrogen atom appeared at δ 6.7 ppm. In addition,
the molecular ion peak M+ was observed at m/z 484 instead of m/z
486 expected for Diels-Alder adduct 6ba. Although the detailed
mechanism is ambiguous, it is considered that 7ba was formed by
the dehydrogenative aromatization of 6 via C-H activation of the
3,4-dehydroproline with Ir species.15 It is noteworthy that the yield
of the cycloisomerization/Diels-Alder reaction/dehydrogenative
aromatization resulting in 7ba (62%) was much higher than that
of the cycloisomerization leading to 5 (39%).
(7) Schreiber, S. L. Science 2000, 287, 1964-1969.
(8) (a) Belvisi, L.; Colombo, L.; Manzoni, L.; Potenza, D.; Scolastico, C.
Synlett 2004, 1449-1471. (b) Kotha, S. Acc. Chem. Res. 2003, 36, 342-
351. (c) Undheim, K.; Efskind, J.; Hoven, G. B. Pure Appl. Chem. 2003,
75, 279-292. (d) Dougherty, D. A. Curr. Opin. Chem. Biol. 2000, 4,
645-652. (e) Gibson, S. E.; Guillo, N.; Tozer, M. J. Tetrahedron 1999,
55, 585-615.
(9) (a) Tramontini, M. Synthesis 1973, 703-775. (b) Tramontini, M.;
Angiolini, L. Tetrahedron 1990, 46, 1791-1837. (c) Wei, C.; Li, Z.; Li,
C.-J. Synlett 2004, 1472-1483.
(10) Although chiral alkynylglycinates were previously prepared, the reductive
removal of the chiral auxiliary led to the hydrogenation of the C-C triple
bond: (a) Williams, R. M.; Zhai, W. Tetrahedron 1988, 44, 5425-5430.
(b) Zhai, D.; Zhai, W.; Williams, R. M. J. Am. Chem. Soc. 1988, 110,
2501-2505.
(11) Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem.,
Int. Ed. 2003, 42, 5763-5766.
Next, the generality of the four-component coupling approach
to polycyclic pyrrolecarboxylates was demonstrated as summarized
in Table 1. The use of phenylacetylene led to the formation of 7aa
in 54% yield with two steps (run 1), while trimethylsilylacetylene
failed to give the corresponding adduct because of the decomposi-
tion of the enyne intermediate under the cycloisomerization
conditions. Although methyl propargyl ether furnished 7ca in rather
lower yield of 41% (run 3), 5-methoxy-1-pentyne, 5-chloro-1-
pentyne, and methyl 5-hexynoate uneventfully gave rise to pyr-
rolecarboxylates 7da, 7ea, and 7fa in 51-74% yields (runs 4-6).
(12) (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. ReV. 2002, 102, 813-
834. (b) Trost, B. M.; Krische, M. J. Synlett 1998, 1-16. (c) Trost, B.
M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268-4278.
(13) (a) Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org.
Chem. 2001, 66, 4433-4436. (b) Kezuka, S.; Okada, T.; Niou, E.;
Takeuchi, R. Org. Lett. 2005, 7, 1711-1714.
(14) For examples of one-pot cycloisomerization/Diels-Alder reaction, see:
(a) van Boxtel, L. J.; Ko¨rbe, S.; Noltemeyer, M.; de Meijere, A. Eur. J.
Org. Chem. 2001, 2283-2292. (b) Nakai, Y.; Uozumi, Y. Org. Lett. 2005,
7, 291-293.
(15) Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083-4091.
JA053408A
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10805