A. Isidro-Llobet, J. Guasch-Camell, M. Álvarez, F. Albericio
FULL PAPER
[13]
[14]
For a broad discussion of this subject, see: L. J. Cruz, N. G.
Beteta, A. Ewenson, F. Albericio, Org. Process Res. Dev. 2004,
8, 920.
Tests of Aspartimide Formation: Rink amide resin (200 mg,
0.66 mmol/g) was used and the synthesis was carried out as out-
lined above using DIPCDI/HOBt-mediated couplings. After re-
moval of the Fmoc group of the Gly, the resin was divided into
two parts for the Fmoc and the pNZ synthesis. After acidolytic
cleavage and workup, the crude products were analyzed by HPLC
[Rt = 9.04 min; gradient: from H2O to H2O/AcCN (7:3), where
H2O contained 0.045% of TFA and AcCN contained 0.036% of
TFA] and HPLC-MS.
Although the existence of this side reaction was not mentioned,
Fmoc-N3 was already proposed as an alternative to the chloro-
formate in the seminal papers of Carpino and Han: L. A. Car-
pino, G. Y. Han, J. Am. Chem. Soc. 1970, 92, 5748 and L. A.
Carpino, G. Y. Han, J. Org. Chem. 1972, 37, 3404.
In the literature, the p-azidobenzyloxycarbonyl group, which
behaves similarly to pNZ, is also described. The reduction of
the azide with dithiothreitol (DTT) or SnCl2 should lead to the
p-aminobenzyloxycarbonyl derivative, which liberates the free
amine by the same mechanism as pNZ. However, in our hands
this azide derivative gave substantially worse results than pNZ.
a) B. Loubinoux, P. Gerardin, Tetrahedron Lett. 1991, 32, 351;
b) R. J. Griffin, E. Evers, R. Davison, A. E. Gibson, D. Layton,
W. J. Irwin, J. Chem. Soc., Perkin Trans. 1 1996, 1205.
J.-F. Wen, W. Hong, K. Yuan, T. C. W. Mak, H. N. C. Wong,
J. Org. Chem. 2003, 68, 8918, and references therein.
J. T. Manka, F. Guo, J. Huang, H. Yin, J. M. Farrar, M. Sien-
kowska, V. Benin, P. Kaszynski, J. Org. Chem. 2003, 68, 9574,
and references therein.
[15]
Acknowledgments
This work was partially supported by CICYT (BQU, 2003-00089),
the Generalitat de Catalunya (Grup Consolidat and Centre de Re-
ferència en Biotecnologia), and the Barcelona Science Park. A. I.
thanks MECD (Spain) for a predoctoral fellowship.
[16]
[17]
[1] a) R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149; b) R. B.
Merrifield, Angew. Chem. Int. Ed. Engl. 1985, 24, 799; c) R. B.
Merrifield, Science 1986, 232, 341.
[2] S. Lien, H. B. Lowman, Trends Biotechnol. 2003, 21, 556.
[3] a) A. Loffet, J. Pept. Sci. J. Peptide Sci. 2002, 8, 1; b) T. Bruck-
dorfer, O. Marder, F. Albericio, Current Pharm. Biotech. 2004,
5, 29.
[4] a) P. Lloyd-Williams; F. Albericio; E. Giralt, Chemical Ap-
proaches to the Synthesis of Peptides and Proteins, CRC, Boca
Raton, FL, USA, 1997; b) T. S. Yokum, G. Barany, in: Solid-
phase Synthesis. A Practical Guide, Marcel Dekker Inc., New
York, USA, 2000, pp. 79–102; c) G. B. Fields, J. L. Lauer-Fi-
elds, R.-q. Liu, G. Barany, in: Synthetic Peptides: A User’s
Guide (Eds.: G. A. Grant), 2nd ed., W. H. Freeman & Co., New
York, 2001, pp. 93–219; d) M. Goodman, A. Felix, L. A. Mor-
oder, C. Toniolo (Eds.), Houben-Weyl, vol. E22a–e (“Synthesis
of Peptides and Peptidomimetics”), Georg Thieme Verlag,
Stuttgart, Germany, 2002.
[18]
[19]
a) W. Liao, C. F. Piskorz, R. D. Locke, K. L. Matta, Bioorg.
Med. Chem. Lett. 2000, 10, 793; b) X. Qian, O. Hindsgaul,
Chem. Commun. 1997, 1059, and references therein.
a) A. A. Pletnev, Q. Tian, R. C. Larock, J. Org. Chem. 2002;
67, 9276; b) M. Schlitzer, M. Böhm, I. Sattler, H.-M. Dahse,
Bioorg. Med. Chem. 2000, 8, 1991.
[20]
[21]
SnCl2 has also been used to remove the pNB ester on solid
phase, see ref.[10]
a) E. Guibé-Jampel, M. Wakselman, Synth. Commun. 1982, 12,
219; b) R. A. Scheurerman, D. Tumelty, Tetrahedron Lett.
2000, 41, 6531.
If aminium/uronium salt coupling methods are used, this neu-
tralization step can be omitted. See synthesis of phospholipase
A2 (18–23).
B. F. Gisin, R. B. Merrifield, J. Am. Chem. Soc. 1972, 94, 3102.
M. C. Khosla, R. R. Smeby, F. M. Bumpus, J. Am. Chem. Soc.
1972, 94, 3102.
For instance, the peptide-resin anchorage: DKP formations are
favored when the peptide is bound to the resin as a benzyl
ester; the nature of the first and second amino acids of the
peptide: the presence of Pro, Gly or of N-alkylamino acids can
lead to a substantial extent of DKP formation because all of
them favor the cis configuration of the amide bond, which is
the optimal configuration to form DKPs. Another unfavorable
combination is to have one d- and one l-amino acid in the
dipeptide because it decreases the steric hindrance during the
cyclization. See ref.[4a]
E. Pedroso, A. Grandas, X. de las Heras, R. Eritja, E. Giralt,
Tetrahedron Lett. 1986, 27, 743.
a) K. Suzuki, K. Nitta, N. Endo, Chem. Pharm. Bull. 1975, 23,
222; b) M. Gairi, P. Lloyd-Williams, F. Albericio, E. Giralt,
Tetahedron Lett. 1990, 31, 7363.
a) K. Akaji, Y. Kiso, L. A. Carpino, J. Chem. Soc., Chem.
Commun. 1990, 584; b) K. Barlos, D. Gatos, W. Schaefer, An-
gew. Chem. Int. Ed. Engl. 1991, 30, 590; c) C. Chiva, M. Vila-
seca, E. Giralt, F. Albericio, J. Pept. Sci. 1999, 5, 131.
J. Alsina, E. Giralt, F. Albericio, Tetrahedron Lett. 1996, 37,
4195.
N. Thieriet, J. Alsina, E. Giralt, F. Guibé, F. Albericio, Tetrahe-
dron Lett. 1997, 38, 7275.
The sequence d-Val-Pro is prone for DKP formation because
it contains the combination of one d- and one l-amino acid
with a Pro residue. On the other hand, the Val is a β-branched
residue and therefore its acylation is not trivial. See
refs.[4a,26,27b,29]
[22]
[23]
[24]
[25]
[5] W. C. Chan; P. D. White (Eds.), Fmoc Solid Phase Peptide Syn-
thesis, Oxford University Press, Oxford, UK, 2000.
[6] The orthogonal concept is based on the use of independent
classes of protecting groups, removed by different mechanisms
so that they may be removed in any order and in the presence
of all other types of groups. a) G. Barany, R. B. Merrifield, J.
Am. Chem. Soc. 1977, 99, 7363; b) G. Barany, F. Albericio, J.
Am. Chem. Soc. 1985, 107, 4936.
[7] F. Albericio, Biopolymers 2000, 55, 123.
[8] a) F. H. Carpenter, D. T. Gish, J. Am. Chem. Soc. 1952, 74,
3818; b) D. T. Gish, F. H. Carpenter, J. Am. Chem. Soc. 1953,
75, 950.
[26]
[27]
[9] a) J. E. Shields, F. H. Carpenter, J. Am. Chem. Soc. 1961, 83,
3066; b) M. D. Hocker, C. G. Caldwell, R. W. Macsata, M. H.
Lyttle, Pept. Res. 1995, 8, 310; c) S. Peluso, P. Dumy, C. Nkub-
ana, Y. Yokokawa, M. Mutter, J. Org. Chem. 1999, 64, 7114.
[10] a) P. Romanovskis, A. F. Spatola, J. Pept. Res. 1998, 52, 356;
b) M. Royo, J. Farrera-Sinfreu, L. Solé, F. Albericio, Tetrahe-
dron Lett. 2002, 43, 2029.
[11] a) M. D. Bachi, J. Ross-Peterson, J. Chem. Soc., Chem. Com-
mun. 1974, 12; b) R. R. Chauvette, P. A. Pennington, J. Med.
Chem. 1975¸ 18, 403; c) S. R. Lammert, A. I. Ellis, R. R. Chau-
vette, S. Kukolja, J. Org. Chem. 1978, 43, 1243; d) K. Fukase,
H. Tanaka, S. Torii, S. Kusumoto, Tetrahedron Lett. 1982, 23,
885; e) R. Balasuriya, S. J. Chandler, M. J. Cook, Tetrahedron
Lett. 1983, 24, 1385; f) S. Hashiguchi, H. Natsugari, M. Ochiai,
J. Chem. Soc., Perkin Trans. 1 1988, 2345; g) M. Namikoshi,
B. Kundu, K. L. Rinehart, J. Org. Chem. 1991, 56, 5464.
[12] M. Tessier, F. Albericio, E. Pedroso, A. Grandas, R. Eritja, E.
Giralt, C. Granier, J. Van-Rietschoten, Int. J. Pept. Protein Res.
1983, 22, 125.
[28]
[29]
[30]
[31]
[32]
For couplings without preactivation of the protected amino
acid, phosphonium salts such as PyAOP are preferred to amin-
ium/uronium salts, because the latter can give guanidinium for-
3038
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 3031–3039