Dalton Transactions
Page 10 of 11
Journal Name
DOI: 10.1039/C4DT02079K
contain the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Data Center via
Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G.
A. Petsko and S. G. Sligar, Science, 2000, 287, 1615; (c) N.
Yamamoto, S. Danos, P. D. Bonnitcha, T. W. Failes, E. J. New
and T. W. Hambley, J. Biol. Inorg. Chem., 2008, 13, 861.
Conclusions
4. (a) Y. Lu and J. S. Valentine, Curr. Opin. Struct. Biol., 1997, 7,
495; (b) J. H. Dawson, Science, 1988, 240, 433; (c) P. R. O. De
Montellano, Acc. Chem. Res., 1987, 20, 289.
This work has shown the synthesis and characterization of a
few mononuclear coordination complexes with amideꢀbased
ligands containing appended heterocyclic rings. Interestingly,
metal complexes displayed the migration of amidic NꢀH
protons to the appended heterocyclic rings during the synthesis.
Such protonated heterocyclic rings create a hydrogen bond
based cavity adjacent to metal ion and assist in binding of Oꢀ
based substrates within the complex cavity. The binding studies
confirm that the substrates are bound within the complex cavity
closer to the Lewis acidic metal in complexes 1 – 5 and
5. (a) A. S. Borovik, Acc. Chem. Res., 2005, 38, 54; (b) L. M.
Berreau, Eur. J. Inorg. Chem. 2006, 273; (c) A. Wada, S.
Yamaguchi, K. Jitsukawa, and H. Masuda, Angew. Chem. Int.
Ed. 2005, 44, 5698; (d) J. C. MarequeꢀRivas and R. Prabaharan,
Chem. Commun. 2004, 76.
6. (a) P. J. Donoghue, A. K. Gupta, D. W. Boyce, C. J. Cramer,
and W. B. Tolman, J. Am. Chem. Soc. 2010, 132, 15869; (b) P.
J. Donoghue, J. Tehranchi, C. J. Cramer, R. Sarangi, E. I.
oxidationꢀsensitive Mn ion in complex 5. All complexes have
been utilized as the reusable and heterogeneous catalysts for the
ringꢀopening reactions of assorted epoxides; cyanation
reactions of various aldehydes; and epoxidation reactions of
several olefins. The work presented in this manuscript
illustrates a viable method of designing substrateꢀspecific
cavity reminiscent to biological catalysts.
Solomon, and W. B. Tolman, J. Am. Chem. Soc. 2011, 133
,
17602; (c) M. R. Halvagar, B. Neisen, and W. B. Tolman,
Inorg. Chem. 2013, 52, 793; (d) M. R. Halvagar and W. B.
Tolman, Inorg. Chem. 2013, 52, 8306; (e) J. Tehranchi, P. J.
Donoghue, C. J. Cramer, and W. B. Tolman, Eur. J. Inorg.
Chem. 2013, 4077.
7. (a) D. Huang and R. H. Holm, J. Am. Chem. Soc. 2010, 132
,
Acknowledgements
4693; (b) D. Huang, O. V. Makhlynets, L. L. Tan, S. C. Lee, E.
V. RybakꢀAkimova, and R. H. Holm, Proc. Nat. Acad. Sci.
2011, 108, 1222; (c) D. Huang, O. V. Makhlynets, L. L. Tan, S.
C. Lee, E. V. RybakꢀAkimova, and R. H. Holm, Inorg. Chem.
2011, 50, 10070; (d) X. Zhang, D. Huang, YꢀS. Chen, and R. H.
Holm, Inorg. Chem. 2012, 51, 11017.
RG acknowledges Council of Scientific and Industrial Research
(CSIR) and the University of Delhi for the financial support.
Authors thank the CIFꢀUSIC at this university for the
instrumental facilities and crystallographic data collection. DB
thanks UGC for a SRF fellowship.
Notes and references
8. (a) A. Rajput and R. Mukherjee, Coord. Chem. Rev. 2013, 257
,
350; (b) H. L. Kwong, H. L. Yeung, C. T. Yeung, W. S. Lee, C.
a
Department of Chemistry, University of Delhi, Delhiꢀ110007. Phone:
S. Lee and W. L. Wong, Coord. Chem. Rev. 2007, 251, 2188;
(c) O. Belda and C. Moberg, Coord. Chem. Rev. 2005, 249
,
b Guru Nanak Dev University, Amritsar, Punjab – 143005.
Electronic Supplementary Information (ESI) available: [Figures for
absorption, NMR, FTIR, mass, emission spectra, binding curves, and
crystal structures; and tables for bonding parameters, weak interactions,
and data collection]. See DOI: 10.1039/b000000x/
727; (d) D. S. Marlin and P. K. Mascharak, Chem. Soc. Rev.
2000, 29, 69.
9. D. Wang, S. V. Lindeman, and A. T. Fiedler, Eur. J. Inorg.
Chem. 2013, 4473.
10. S. M. Redmore, C. E. F. Rickard, S. J. Webb, and L. J. Wright,
Inorg. Chem. 1997, 36, 4743.
†The structure solution of complex
2 offered two crystallographic
11. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, John Wiley & Sons, New York,
possibilities. First in which two monomeric halves are bridged by a
methanol molecule while all coordinated nitrate ions have full site
occupancy. Second; where two monomeric halves are bridged by a
methoxide ion while two and one nitrate ions are respectively modelled
with full and half site occupancy. Although the latter model converged
better but our analytical data support the former formulation.
1986
.
12. W. J. Geary, Coord. Chem. Rev. 1971,
7, 81.
13. A. W. Addition, T. N. Rao, J. Reedjik, J. Van Rinj, and G. C.
Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.
14. (a) W. Holderich, U. Barsnick, in Fine Chemicals Through
Heterogeneous Catalysis, Ed. R. A. Sheldon, H. van Bekkum,
2001, WileyꢀVCH, Weinheim. (b) C. J. Morten, A. J. Byers, A.
R. Van Dyke, I. Vilotijevic, and T. F. Jamison, Chem. Soc. Rev.
2009, 38, 3175. (c) K. B. Sharpless and T. R. Verhoeven,
Aldrichim. Acta 1979, 12, 63.
1. (a) R. Yamaguchi, K. Fujita, Ligand Platforms in Homogenous
Catalytic Reactions with Metals: Practice and Applications for
Green Organic Transformations, (2014) Wiley; (b) A. J. L.
Pombeiro, Ed. Advances in Organometallic Chemistry (2013),
Wiley.
15. (a) J. Yamada, M. Yumoto, and Y. Yamamoto, Tetrahedron
Lett. 1989, 30, 4255; (b) S. Sagawa, H. Abe, Y. Hase, and T.
Inaba, J. Org. Chem. 1999, 64, 4962; (c) J. Auge and F. Leroy,
Tetrahedron Lett. 1996, 37, 7715; (d) M. Chini, P. Croti, L.
Favero, M. Macchia, and M. Pineschi, Tetrahedron Lett. 1994,
35, 433; (e) T. Ollevier and G. LavieꢀCompin, Tetrahedron Lett.
2. (a) D. Natale and J. C. MarequeꢀRivas, Chem. Commun., 2008,
425; (b) R. L. Shook and A. S. Borovik, Chem. Commun., 2008,
6095; (c) L. Brammer, Dalton Trans., 2003, 3145.
3. (a) D. W. Christianson and J. D. Cox, Annu. Rev. Biochem.
,
1999, 68, 33; (b) I. Schlichting, J. Berendzen, K. Chu, A. M.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 9