Angewandte
Chemie
[20] H. H. Wasserman, K. R. Brunner, J. D. Buynak, C. G. Carter, T.
[1] K. Dobashi, K. Nagaoka, Y. Watanabe, M. Nishida, M. Hamada,
H. Naganawa, T. Takita, T. Takeuchi, H. Umezawa, J. Antibiot.
1985, 1166.
Oku, R. P. Robinson, J. Am. Chem. Soc. 1985, 107, 519.
[21] E. J. Corey, K. C. Nicolaou, R. D. Balanson, Y. Machida, Syn-
thesis 1975, 590.
[2] a) G. A. Ellestad, D. B. Cosulich, R. W. Broschard, J. H. Martin,
M. P. Kunstmann, G. O. Morton, J. E. Lancaster, W. Fulmor,
F. M. Lovell, J. Am. Chem. Soc. 1978, 100, 2515; b) S. H. L. Chiu,
R. Fiala, R. Kennett, L. Wozniak, M. W. Bullock, J. Antibiot.
1984, 1000; c) H.-R. Tsou, R. R. Fiala, P. C. Mowery, M. W.
Bullock, J. Antibiot. 1984, 1382.
[22] H. Bayley, D. N. Stadring, J. R. Knowles, Tetrahedron Lett. 1978,
19, 3633.
[3] For synthetic studies of glycocinnamoylspermidine antibiotics,
see: a) K. Araki, K. Miyazawa, H. Hashimoto, J. Yoshimura,
Tetrahedron Lett. 1982, 23, 1705; b) K. Araki, H. Hashimoto, J.
Yoshimura, Carbohydr. Res. 1982, 109, 143; c) K. Araki, M.
Kawa, K. Miyazawa, H. Hashimoto, J. Yoshimura, Bull. Chem.
Soc. Jpn. 1986, 59, 3137.
[4] Personal communication from Dr. H. Naganawa and Dr. Y.
Takahashi.
[5] a) Y. Ichikawa, T. Nishiyama, M. Isobe, Synlett 2000, 1 253; b) Y.
Ichikawa, T. Nishiyama, M. Isobe, J. Org. Chem. 2001, 66, 4200.
[6] T. Nishiyama, Y. Ichikawa, M. Isobe, Synlett 2004, 89.
[7] a) Y. Ichikawa, T. Ito, T. Nishiyama, M. Isobe, Synlett 2003, 1034;
b) Y. Ichikawa, T. Ito, M. Isobe, Eur. J. Org. Chem. 2005, 1949.
[8] K. Soai, A. Ookawa, T. Kaba, K. Ogawa, J. Am. Chem. Soc. 1987,
109, 7111.
[9] For representative examples of the allylic cyanate-to-isocyanate
rearrangement, see: a) C. Christophersen, A. Holm, Acta Chem.
Scand. 1970, 24, 1512; b) L. E. Overman, M. Kakimoto, J. Org.
Chem. 1978, 43, 4564; c) Y. Ichikawa, Synlett 1991, 238; d) K.
Banert, S. Groth, Angew. Chem. 1992, 104, 865; Angew. Chem.
Int. Ed. Engl. 1992, 31, 866.
[10] a) Y. Ichikawa, K. Tsuboi, M. Isobe, J. Chem. Soc. Perkin Trans.
1 1994, 2791; b) Y. Ichikawa, M. Osada, I. Ohtani, M. Isobe, J.
Chem. Soc. Perkin Trans. 1 1997, 1449.
[11] K. S. Kim, Y. H. Song, B. H. Lee, C. S. Hahn, J. Org. Chem. 1986,
51, 404.
[12] D. A. Evans, S. W. Kaldor, T. K. Jones, J. Clardy, T. J. Stout, J.
Am. Chem. Soc. 1990, 112, 7001.
[13] H. Paulson, Z. Gyorgydeak, M. Friedman, Chem. Ber. 1974, 107,
1568.
[14] a) Y. Ichikawa, J. Chem. Soc. Perkin Trans. 1 1992, 2135; b) I. A.
OꢀNeil in Comprehensive Organic Functional Group Trans-
formations, Vol. 3 (Eds.: A. Katritzky, O. Meth-Cohn, C. W.
Ress), Pergamon, Oxford, 1995, pp. 696.
[15] Multigram quantities of the phenyl glycoside 21 were readily
obtained in 51% yield from d-galactal by the following three-
step synthesis: 1) azidonitration of the d-galactal I followed by
acetolysis to give II (see: R. U. Lemieux, R. M. Ratcliffe, Can. J.
Chem. 1979, 57, 1244), 2) Lewis acid catalyzed glycosylation of II
with phenol (86%, a/b 4:1), and 3) deprotection of the acetyl
groups and purification of the resulting triol by recrystallization.
[16] For recent examples of C6 deoxygenation, see: A. Medgyes, E.
Farkas, A. Liptak, V. Pozsgay, Tetrahedron 1997, 53, 4159.
[17] T. Sugiyama, Bull. Chem. Soc. Jpn. 1981, 54, 2847.
[18] Z. X. Guo, A. N. Cammidge, D. Horwell, Synth. Commun. 2000,
30, 2933.
[19] S. N. Maiti, J. Beres, M. P. Singh, R. G. Micetich, Tetrahedron
Lett. 1986, 27, 1423.
Angew. Chem. Int. Ed. 2005, 44, 4372 –4375
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4375