2126
Russ.Chem.Bull., Int.Ed., Vol. 61, No. 11, November, 2012
Sokolov and Aksinenko
Table 2. 1Н и 19F NMR spectroscopy data for compounds 5, 7, 9—12 in DMSOꢀd6
Comꢀ
pound
1H, , J/Hz
19F,
5b
5c
2.12 (s, 3 H, MeC(O)); 2.25 (s, 3 H, Me); 7.24—7.62 (m, 4 H, CHAr);
10.51 (s, 1 H, NH); 10.98 (s, 1 H, NH); 11.75 (s, 1 H, NH); 13.04 (s, 1 H, NH)
2.24 (s, 3 H, MeC(O)); 2.81 (t, 2 H, CH2, J = 6.7); 3.73 (s, 3 H, MeO);
3.77 (s, 3 H, MeO); 4.02 (t, 2 H, CH2, J = 6.7); 6.66—6.80 (m, 2 H, CHAr);
6.85 (s, 1 H, CHAr); 10.57 (s,1 H, NH); 10.83 (s, 1 H, NH); 12.32 (s, 1 H, NH);
13.02 (s, 1 H, NH)
2.22 (s, 3 H, MeC(O)); 7.21—7.61 (m, 5 H, CHAr); 10.92 (s, 1 H, NH);
11.73 (s, 1 H, NH); 12.52 (s,1 H, NH); 13.15 (s, 1 H, NH)
2.23 (s, 3 H, MeC(O)); 2.42 (s, 3 H, Me); 7.00—7.19 (m, 1 H, CHAr);
7.33 (t, 1 H, CHAr, J = 7.3); 7.38—7.51 (m, 2 H, CHAr); 10.71 (s, 1 H, NH);
11.64 (s, 1 H, NH); 12.38 (s, 1 H, NH); 13.09 (s, 1 H, NH)
2.26 (s, 3 H, MeC(O)); 2.44 (s, 3 H, Me); 7.09—7.44 (m, 4 H, CHAr);
10.63 (s, 1 H, NH); 11.61 (s, 1 H, NH); 12.28 (s, 1 H, NH); 13.10 (s, 1 H, NH)
2.29 (s, 3 H, MeC(O)); 3.22 (s, 3 H, Me); 9.11 (s, 1 H, NH); 11.01 (s, 1 H, NH);
13.16 (s, 1 H, NH)
1.57 (m, 2 H, CH2); 1.84 (m, 6 H, CH2); 2.24 (s, 3 H, MeC(O));
4.30 (quint, 1 H, CH, J = 7.3); 9.73 (s, 1 H, NH); 11.23 (s, 1 H, NH);
13.08 (s, 1 H, NH)
2.29 (s, 3 H, MeC(O)); 4.57 (s, 2 H, CH2); 7.27—7.48 (m, 5 H, CHAr);
9.33 (s, 1 H, NH); 11.12 (s, 1 H, NH); 13.25 (s, 1 H, NH)
0.95 (t, 3 H, Me, J = 7.6); 1.16—1.39 (m, 2 H, CH2); 1.53—1.69 (m, 2 H, CH2);
3.75—3.92 (m, 2 H, CH2); 7.82 (s, 2 H, NH2); 10.05 (s, 1 H, NH);
10.62 (s, 1 H, NH); 11.92 (s, 1 H, NH)
2.84 (t, 2 H, CH2, J = 6.7); 3.71 (s, 3 H, MeO); 3.80 (s, 3 H, MeO);
4.09 (t, 2 H, CH2, J = 6.7); 6.61—6.76 (m, 2 H, CHAr); 6.81 (s, 1 H, CHAr);
7.76 (s, 2 H, NH2); 10.15 (s, 1 H, NH); 10.78 (s, 1 H, NH); 11.85 (s, 1 H, NH)
7.30—7.66 (m, 5 H, CHAr); 7.91 (s, 2 H, NH2); 10.33 (s, 1 H, NH);
10.62 (s, 1 H, NH); 12.03 (s, 1 H, NH)
3.34 (s, 3 H, Me); 7.72 (s, 2 H, NH2); 9.42 (s, 1 H, NH); 10.88 (s, 1 H, NH)
1.42 (m, 2 H, CH2); 1.73 (m, 6 H, CH2); 4.08 (quint, 1 H, CH, J = 7.2);
7.67 (s, 2 H, NH2); 9.33 (s, 1 H, NH); 10.88 (s, 1 H, NH)
4.48 (s, 2 H, CH2); 7.31—7.52 (m, 5 H, CHAr); 7.58 (s, 2 H, NH2);
9.51 (s, 1 H, NH); 11.05 (s, 1 H, NH)
5.41 (s)
4.78 (s)
4.54 (s)
7a
7b
5.14 (s)
5.07 (s)
0.21 (s)
7c
9a
9b
0.12 (s)
0.35 (s)
9c
10a
5.04 (с)
5.11 (s)
10b
11
4.98 (s)
0.35 (s)
12a
12b
0.22 (s)
0.52 (s)
12c
CF3COOH (external standard). Melting point determination was
performed in a sealed capillary. Starting compounds 6ꢀaminoꢀ
uracils 4а—с and 6ꢀaminothiouracils 6а—с were obtained acꢀ
cording to the published earlier method13, Nꢀ(5ꢀsulfamoylꢀ1,3,4ꢀ
thiazolꢀ2ꢀyl)acetamide (1), methyl ester of trifluoropyruvic acid
(2) and Nꢀsubstituted ureas 8a—c were purchased from Aldrich
and used without further purification.
Nꢀ{5ꢀ[(1ꢀButylꢀ2,4,6ꢀtrioxoꢀ5ꢀtrifluoromethylꢀ2,3,4,5,6,7ꢀ
hexahydroꢀ1Нꢀpyrrolo[2,3ꢀd]pyrimidineꢀ5ꢀyl)sulfamoyl]ꢀ1,3,4ꢀ
thiadiazolꢀ2ꢀyl}acetamide (5a) (general procedure). To the stirred
solution of 2.22 g (0.01 mol) of Nꢀ(5ꢀaminosulfamoylꢀ1,3,4ꢀ
thiazolꢀ2ꢀyl)acetamide (1) in 20 mL of DMF, 1.56 g (0.02 mol)
of pyridine and 1.56 g (0.01 mol) of MTFP (2) were added
consistently. The reaction mixture was stirred for 30 min, then
1.19 g (0.01 mol) of SOCl2 was added, the mixture was stirred for
1 h, then 1.83 g (0.01 mol) of aminouracyl 4а was added, the
mixture was stirred for 1 h at 20 C, then 0.1 g of Et3N was added
and the mixture was kept at 90—100 C for 2 h. Then the reaction
mixture was cooled and poured into 50 mL of 10% aqueous solꢀ
ution of NaCl. The residue was filtered and recrystallized from
50% EtOH. The yield of 5а was 4.1 g (80%). M.p. 207—209 С.
Found (%)): C, 35.44; H, 3.31; N, 19.36. C15H16F3N7O6S2.
investigated using the agar diffusion test. Data shown in
Table 3 demonstrated high activity of compounds 12а—с
against B. Anthracis and Candida, in comparison with
streptocide12.
Herewith, three component reaction of Nꢀ(5ꢀsulfaꢀ
moylꢀ1,3,4ꢀthiadiazolꢀ2ꢀyl)acetamide, MTFP, and 1,3ꢀbiꢀ
nucleophiles results in novel fluorineꢀcontaining heteroꢀ
cyclic derivatives of acetazolamide and presents the proꢀ
spective approach to modification of this medical prodꢀ
uct. The following hydrolysis of heterocyclic derivatives of
acetazolamide results in formation of fluorineꢀcontaining
heterocyclic derivatives of 5ꢀaminoꢀ1,3,4ꢀthiadiazolꢀ2ꢀ
sulfonic acid, which are potential bactericidal sulfonamide
compounds.
Experimental
1
H and 19F NMR spectra were registered on the NMR
spectrometer Bruker DPX 200 (200.13 and 188.29 МHz correꢀ
spondingly) in CDCl3 using Me4Si (internal standard) and