C O M M U N I C A T I O N S
Scheme 1
Culture, Sports, Science and Technology, Japan. T.H. thanks the
Japan Society for the Promotion of Science for Young Scientists
for Research Fellowships.
Supporting Information Available: Experimental details and
characterization data for new compounds (PDF). This material is
References
excellent enantiomeric excesses (88-94% ee) (entries 1-5). The
sterically hindered tert-butyl-substituted nitrone also showed excel-
lent enantioselectivity (entry 6), while the use of the cyclohexyl
analogue lowered the enantioselectivity (entry 7). Furthermore, the
synthetically useful nitrone with a 1,3-dithianyl group10 could be
successfully utilized in the 1,3-dipolar cycloaddition (entry 8).
Indeed, hydrolysis of the resulting isoxazolidine 3 with mercuric
salts produced the corresponding acetyl isoxazolidine 4 in good
yield (Scheme 1). Meanwhile, TBDPS protection of 3, followed
by reductive desulfurization with Raney-nickel, provided amino
alcohol 5 in moderate yield. In both cases, the transformations
proceeded without any loss of enantiomeric purity.
Plausible reaction pathways have been proposed to account for
the higher reactivity and selectivity of bis-Ti(IV) oxide (S,S)-1
compared to that of other mono-Ti(IV)/BINOL complexes. First,
the Lewis acidity of one titanium center may be enhanced by the
intramolecular coordination of one isopropoxy oxygen to the other
titanium, as shown in [A].6,11 With the coordination of nitrone to
the more acidic titanium center in [A], this isopropoxy group shifts
to the other titanium, as shown in [B], thereby inducing the
coordination of acrolein to furnish [C]. Here, the steric repulsion
between the nitrone and the ligand in (S,S)-1 would contribute to
the decomplexation of the nitrone.12,13 Then, the activated acrolein
may react with the free nitrone, as indicated in [D], to give the
corresponding cycloadduct. The direct attack of acrolein to [A] is
also conceivable.
(1) For recent reviews, see: (a) Martin, J. N.; Jones, R. C. F. In Synthetic
Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley and
Sons: Hoboken, NJ, 2003; Chapter 1, p 1. (b) Gothelf, K. V.; Jørgensen,
K. A. Chem. ReV. 1998, 98, 863. (c) Gothelf, K. V.; Jørgensen, K. A.
Chem. Commun. 2000, 1449. (d) Gothelf, K. V. In Cycloaddition Reactions
in Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-
VCH: Weinheim, Germany, 2002; Chapter 6, p 211. (e) Kanemasa, S.
In Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jørgensen,
K. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 7, p 249.
(2) For representative examples, see: (a) Gothelf, K. V.; Jørgensen, K. A. J.
Org. Chem. 1994, 59, 5687. (b) Seebach, D.; Marti, R. E.; Hintermann,
T. HelV. Chim. Acta 1996, 79, 1710. (c) Gothelf, K. V.; Hazell, R. G.;
Jørgensen, K. A. J. Org. Chem. 1996, 61, 346. (d) Hori, K.; Kodama, H.;
Ohta, T.; Furukawa, I. Tetrahedron Lett. 1996, 37, 5947. (e) Jensen, K.;
Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1997, 62,
2471. (f) Kobayashi, S.; Kawamura, M. J. Am. Chem. Soc. 1998, 120,
5840. (g) Hori, K.; Kodama, H.; Ohta, T.; Furukawa, I. J. Org. Chem.
1999, 64, 5017. (h) Desimoni, G.; Faita, G.; Mortoni, A.; Righetti, P.
Tetrahedron Lett. 1999, 40, 2001. (i) Kodama, H.; Ito, J.; Hori, K.; Ohta,
T.; Furukawa, I. J. Organomet. Chem. 2000, 603, 6. (j) Iwasa, S.;
Tsushima, S.; Shimada, T.; Nishiyama, H. Tetrahedron Lett. 2001, 42,
6715.
(3) The nitrone, such as N-propylidenebenzylamine-N-oxide, derived from
an aliphatic aldehyde also showed excellent diastereo- and enantioselec-
tivity: (a) Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am.
Chem. Soc. 1998, 120, 12355. (b) Suga, H.; Nakajima, T.; Itoh, K.; Kakehi,
A. Org. Lett. 2005, 7, 1431.
(4) (a) Viton, F.; Bernardinelli, G.; Ku¨ndig, E. P. J. Am. Chem. Soc. 2002,
124, 4968. (b) Mita, T.; Ohtsuki, N.; Ikeno, T.; Yamada, T. Org. Lett.
2002, 4, 2457. (c) Ohtsuki, N.; Kezuka, S.; Kogami, Y.; Mita, T.;
Ashizawa, T.; Ikeno, T.; Yamada, T. Synthesis 2003, 9, 1462. (d)
Shirahase, M.; Kanemasa, S.; Oderaotoshi, Y. Org. Lett. 2004, 6, 675.
(e) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodriguez, R.; Oro, L. A.;
Balana, A. I.; Lahoz, F. J.; Tejero, T.; Merino, P.; Franco, S.; Montesa,
I. J. Am. Chem. Soc. 2004, 126, 2716.
(5) The organocatalyst developed by MacMillan exhibited excellent generality
in asymmetric 1,3-dipolar cycloaddition reaction of nitrones and various
R,â-unsaturated aldehydes: (a) Jen, W. S.; Wiener, J. J. M.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2000, 122, 9874. (b) Karlsson, S.; Hoegberg,
H.-E. Eur. J. Org. Chem. 2003, 15, 2782.
(6) (a) Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 1708. (b) Hanawa, H.; Uraguchi, D.; Konishi, S.; Hashimoto, T.;
Maruoka, K. Chem.sEur. J. 2003, 9, 4405.
(7) Multinuclear chiral titanium complexes: (a) Davis, T. J.; Balsells, J.;
Carroll, P. J.; Walsh, P. J. Org. Lett. 2001, 3, 699. (b) Walsh, P. J. Acc.
Chem. Res. 2003, 36, 739. (c) Waltz, K. M.; Carroll, P. J.; Walsh, P. J.
Organometallics 2004, 23, 127.
(8) For µ-oxo-type chiral titanium Lewis acids, see: (a) Kitamoto, D.; Imma,
H.; Nakai, T. Tetrahedron Lett. 1995, 36, 1861. (b) Mikami, K.; Ueki,
M.; Matsumoto, Y.; Terada, M. Chirality 2001, 13, 541. (c) Saito, B.;
Katsuki, T. Chirality 2003, 15, 24. (d) Belokon, Y. N.; Blacker, A. J.;
Clutterbuck, L. A.; North, M. Org. Lett. 2003, 5, 4505.
(9) For dichlorodiisopropoxytitanium-catalyzed 1,3-dipolar cycloaddition
between a nitrone and a monodentate R,â-unsaturated ketone, see:
Kanemasa, S.; Uemura, T.; Wada, E. Tetrahedron Lett. 1992, 33, 7889.
(10) Smith, A. B., III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365.
(11) For a recent review, see: Yamamoto, H.; Futatsugi, K. Angew. Chem.,
Int. Ed. 2005, 44, 1924.
(12) Replacement of the R groups in the nitrone in Table 2 with sterically less
demanding primary alkyl groups should decrease the yield of the
cycloadduct. Indeed, when the ethyl-substituted nitrone was employed,
the corresponding cycloadduct was obtained in low yield (27%) under
the same conditions.
In summary, we have developed an asymmetric 1,3-dipolar
cycloaddition reaction between various nitrones and acrolein
catalyzed by the µ-oxo-type chiral bis-Ti(IV) oxide (S,S)-1, which
gave rise to the corresponding isoxazolidines with high to excellent
enantioselectivities. Further study is underway to expand the scope
of this methodology, as well as to ascertain mechanistic details of
the bis-Ti(IV)-catalyzed asymmetric process.
(13) Kanemasa, S.; Ueno, N.; Shirahase, M. Tetrahedron Lett. 2002, 43, 657.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
JA0523284
9
J. AM. CHEM. SOC. VOL. 127, NO. 34, 2005 11927