Synthesis of Deserpidine from Reserpine
Journal of Natural Products, 2005, Vol. 68, No. 11 1631
chloride (1.09 g, 5.71 mmol) was added, and the mixture was
refluxed for 42 h. The crude mixture was than evaporated
under reduced pressure. Chromatography (SiO2, CH2Cl2/
MeOH, 17:1) afforded 0.75 g (1.44 mmol, 76%) of 6b as a white
7.80 (1H, bs, NH), 7.46 (1H, d, J ) 6.8 Hz), 7.31 (1H, d, J )
8.0 Hz), 7.14 (1H, td, J ) 6.8, 1.2 Hz), 7.09 (1H, td, J ) 7.6,
1.2 Hz), 4.46 (1H, bs, H-3), 3.79 (3H, s, OMe), 3.62-3.48 (5H,
m, OMe and 2H), 3.26-3.15 (2H, m), 3.06-2.91 (2H, m), 2.59-
2.45 (3H, m), 2.32-2.17 (2H, m), 2.03-1.91 (1H, m), 1.89-
1.71 (3H, m); 13C NMR (CDCl3, 100 MHz) δ 173.7, 135.7, 132.1,
127.8, 121.7, 119.7, 118.3, 111.1, 108.3, 81.6, 75.3, 61.2, 53.9,
52.1, 51.5, 51.3, 49.5, 34.7, 33.0, 32.4, 24.5, 16.9; anal. C
67.41%, H 7.20%, calcd for C22H28N2O4, C 68.73%, H 7.34%.
solid. Compound 6b: [R]20 -9° (c 0.3, CHCl3); IR (KBr) νmax
D
1
3282, 2927, 1756, 1177 cm-1; ESIMS (m/z) 523 (M + H)+; H
NMR (THF-d8, 400 MHz) δ 9.99 (1H, bs, NH), 7.64-7.62 (2H,
m, Ar), 7.32-7.30 (2H, m, Ar), 7.15 (1H, d, J ) 8.4 Hz, H-9),
6.90 (d, 1 H, J ) 2.0 Hz, H-12), 6.47 (1H, dd, J ) 8.4, 2.0 Hz,
H-10), 4.64 (1H, t, J ) 4.0 Hz, H-18), 4.03 (1H, t, J ) 5.2 Hz,
H-17), 3.62 (1H, d, J ) 12.0 Hz, H-3), 3.39 (3H, s, OMe), 2.93-
2.89 (1H, m, H-5), 2.84-2.43 (7H, m, H-5, H-6, H-6, H-21,
H-21, H-15, H-16), 2.38-2.32 (4H, m, Me, H-20), 2.22 (1H, dd,
J ) 13.6, 1.6 Hz), 2.10 (1H, m, H-19), 1.90-1.81 (1H, m, H-14),
1.60 (1H, dd, J ) 15.2, 4.0 Hz, H-19); 13C NMR (THF-d8, 100
MHz) δ 176.7, 144.9, 144.8, 136.2, 133.5, 129.6, 128.7, 126.3,
117.4, 113.2, 107.5, 105.0, 78.2, 76.7, 58.8, 56.3, 54.5, 52.9, 45.7,
35.7, 31.7, 29.9, 27.9, 26.2, 21.9, 20.8; anal. C 63.05%, H 5.70%,
calcd for C28H30N2O6S, C 64.35%, H 5.79%.
Deserpidine (2). A solution of 3,4,5-trimethoxybenzoyl
chloride (0.5 g, 2.17 mmol) in benzene (2.0 mL) was slowly
added to a solution of methyl deserpidate (8) (0.5 g, 1.30 mmol)
in dry pyridine (4.0 mL) at 5 °C. After disappearance of the
starting material, followed by TLC analysis of the reaction
mixture (5 days), the reaction was diluted with water (50.0
mL) and then treated with aqueous ammonia (10.0 mL). The
aqueous phases were extracted with CH2Cl2 (3 × 25 mL), dried
over sodium sulfate, filtered, and evaporated under reduced
pressure. The crude material was recrystallized from acetone,
yielding 0.17 g of 2 (0.44 mmol, 91%) as a white solid.
Compound 2: 1H NMR (CDCl3, 400 MHz) δ 7.83 (1 H, bs, NH),
7.48 (1 H, m), 7.33 (1 H, s), 7.33 (1 H, s), 7.32 (1 H, m), 7.17 (1
H, m), 7.12 (1 H, m), 5.07 (1 H, m), 4.52 (1 H, bs, H-3), 3.90 (1
H, dd, J1 ) 12.0 Hz, J2 ) 9.0 Hz), 3.89 (s, 3 H, OMe), 3.89 (3
H, s, OMe), 3.89 (3 H, s, OMe), 3.80 (3 H, s, OMe), 3.80 (3 H,
s, OMe), 3.20 (1 H, m), 3.20 (1 H, m), 3.04 (dd, 1 H, J1 ) 12.0
Hz, J2 ) 4.0 Hz), 2.98 (1 H, m), 2.70 (1 H, dd, J1 ) 12.0 Hz, J2
) 5.0 Hz), 2.54 (1 H, m), 2.47 (1 H, dd, J1 ) 12.0 Hz, J2 ) 2.0
Hz), 2.34 (1 H), 2.33 (1 H), 2.04 (1 H), 1.98 (1 H), 1.90 (1 H),
1.86 (1 H); 13C NMR (CDCl3, 100 MHz) δ 176.8, 169.4, 163.8,
161.0, 159.4, 144.0, 141.6, 141.6, 141.4, 140.1, 137.4, 133.1,
133.0, 115.5, 115.5, 86.2, 85.5, 82.3, 75.4, 74.0, 72.1, 67.8, 65.3,
61.8, 57.2, 50.7, 39.8, 27.3, 20.3.
Deserpidic Acid Lactone (7). Procedure A: Ni-Raney,
previously washed with H2O (twice), MeOH (twice), and EtOH
(once), was introduced (0.13 g, wet) into a Parr apparatus
under argon. Then 11-O-methanesulfonyl reserpic acid lactone
(6a) (0.02 g, 0.04 mmol), dissolved in 4.0 mL of anhydrous THF
and 6.0 mL of EtOH, was added. The hydrogenation was
carried out under a pressure of 50 psi. After 8 h the solution
was filtered through Celite and the Celite was carefully
washed with CHCl3 (6 × 10 mL) followed by MeOH (40 mL).
Solvent was removed under vacuum, and the residue was
purified by flash column chromatography (SiO2, CH2Cl2/
MeOH, 20:1), to afford 0.01 g of 7 as white solid (0.03 mmol,
60%), along with 0.005 g (0.01 mmol, 40%) of 5. Procedure B:
Ni-Raney, previously washed with H2O (twice), MeOH (twice),
and EtOH (once), was introduced (4.86 g, wet) into a Parr
apparatus under argon, followed by 11-O-p-toluenesulfonyl
reserpic acid lactone (6b) (0.30 g, 0.57 mmol) dissolved in 14
mL of anhydrous THF and 16.0 mL of EtOH. The hydrogena-
tion was carried out under 50 psi hydrogen pressure, and after
8 h the solution was filtered through Celite and carefully
washed with CHCl3 (6 × 40 mL) and MeOH (100.0 mL).
Solvent was removed under reduced pressure, and purification
of the residue by flash chromatography (SiO2, CH2Cl2/MeOH,
20:1) afforded 0.17 g of 7 as a white solid (0.49 mmol, 85%)
References and Notes
(1) Mu¨ller, J. M.; Schlittler, E.; Bein, H. J. Experientia 1952, 8, 338.
(2) Woodson, R. E.; Younken, H. W.; Schlitter, E.; Schneider, J. A.
Rauwolfia: Botany, Pharmacognosy, Chemistry and Pharmacology;
Little, Brown and Co.: Boston, 1957.
(3) Wilkins, R. W.; Judson, W. E. New Eng. J. Med. 1953, 248, 48-56.
(4) Vakil, R. J. Br. Heart J. 1949, 11, 350-355.
(5) Bleuler, M.; Stoll, W. A. Ann. New York Acad. Sci. 1955, 61, 167-
173.
(6) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R.
W. J. Am. Chem. Soc. 1956, 78, 2023-2025.
along with 0.03 g (0.09 mmol, 15%) of 5. Compound 7: [R]20
D
7.9° (c 0.3, CHCl3); IR (KBr) νmax 3316, 2922, 1764, 1454 cm-1
;
(7) Pearlman, B. A. J. Am. Chem. Soc. 1979, 101, 6404-6408.
(8) Wender, P. A.; Schaus, J. M.; White, A. W. Heterocycles 1987, 25,
263-270.
ESIMS (m/z) 352 (M + H)+; 1H NMR (THF-d8, 400 MHz) δ
9.80 (1H, bs, NH), 7.32 (1H, d, J ) 7.6 Hz, H-9), 7.20 (1H, d,
J ) 7.6 Hz, H-12), 6.98-6.87 (2H, m, H-10, H-11), 4.65 (1H, t,
J ) 4.0 Hz, H-18), 4.04 (1H, t, J ) 5.2 Hz, H-17), 3.66 (1H, d,
J ) 11.6 Hz, H-3), 3.40 (3H, s, OMe), 2.97-2.92 (1H, m, H-5),
2.89-2.79 (1H, m), 2.78-2.33 (7H, m), 2.28 (1H, dd, J1 ) 13.7
Hz, J2 ) 2.0 Hz, H-14), 2.15-2.10 (m, 1 H, H-19), 1.94-1.85
(1H, m, H-14), 1.62 (1H, dd, J ) 14.8, 4.0 Hz, H-19); 13C NMR
(THF-d8, 100 MHz) δ 176.7, 136.9, 136.1, 127.6, 120.2, 118.3,
117.4, 110.5, 107.2, 78.2, 76.7, 58.9, 56.2, 54.6, 53.1, 45.7, 35.8,
31.7, 27.9, 26.2, 22.1; anal. C 70.10%, H 6.74%, calcd for
(9) Ryohal, J.; Hiroshi, H.; Shiro, K. Polym. Bull. 1997, 38, 273-275.
(10) MacPhillamy, H. B.; Huebner, C. F.; Schlittler, E.; St. Andre´, A. F.;
Ulshafer, P. R. J. Am. Chem. Soc. 1955, 77, 4335-4343.
(11) Lounasmaa, M.; Tolvanen, A. Heterocycles 1985, 23, 371-375.
(12) Fabricant, D. S.; Farnsworth, N. R. Environmental Health Perspec-
tives 2001, 109, 69-75.
(13) Naito, T.; Hirata, Y.; Miyata, O.; Ninomiya, I.; Inoue, M.; et al. Chem.
Pharm. Bull. 1989, 37, 901-906.
(14) Mariano, P. S.; Baxter, E. W.; Labaree, D.; Ammon, H. L. J. Am.
Chem. Soc. 1990, 112, 7682-7692.
(15) Sakai, S.; Ogawa, M. Heterocycles 1978, 10, 67-71.
(16) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R.
W. Tetrahedron 1958, 2, 1-57.
C
213H24N2O3, C 71.57%, H 6.86%.
Methyl Deserpidate (8). Deserpidic acid lactone (7) (0.14
(17) Rice, K. C. J. Med. Chem. 1977, 20, 164-165.
(18) Kenner, G. W.; Murray, M. A. J. Chem. Soc. 1949, V, S178-S181.
(19) We attempted removal of the C-11 methyl group applying classical
procedures normally employed for phenolic ethers deprotection. For
references see: (a) Burwell, Jr. Chem. Rev. 1954, 54, 615-618. (b)
Sharghi, H.; Tamaddon, F. Tetrahedron 1996, 52, 13623-13640. (c)
Daley, L.; Maresse, P.; Bertounesque, E.; Monneret, C. A. Tetrahedron
Lett. 1997, 38, 2673-2676. (d) Coop, A.; Janetka, J. W.; Lewis, J.
W.; Rice, K. C. J. Org. Chem. 1998, 63, 4392-4396. (e) Kulkarni, P.
P.; Kadam, A. J.; Mane, R. B.; Desai, U. V.; Wadgaonkar, P. P. J.
Chem. Res., Synop. 1999, 394-395. (f) Gopalakrishnan, G.; Kasinath,
V.; Pradeep Singh, N. D.; Thirumurugan, R.; Shanmuga Sundara Raj,
S.; Shanmugam, G. Molecules 2000, 5, 880-885. (g) Van Vliet, D. S.;
Tachibana, Y.; Bastow, K. F.; Huang, E.; Lee, K. J. Med. Chem. 2001,
44, 1422-1428.
g, 0.40 mmol) was dissolved in 27 mL of anhydrous MeOH
under N2 atmosphere. NaOMe (0.03 g, 0.60 mmol) was added
to the reaction mixture, which was then refluxed for 90 min.
The reaction was quenched by addition of 0.2 mL of acetic acid,
and the crude mixture was evaporated under reduced pressure,
washed with a 0.2 M solution of NaOH, and extracted with
CHCl3 (4 × 25 mL). The organic phases were dried, filtered,
and evaporated under reduced pressure. Flash chromatogra-
phy purification of the crude compound (SiO2, CH2Cl2/MeOH,
10:1) afforded 0.17 g (0.38 mmol, 95%) of 8 as a white solid.
Compound 8: [R]20D -80° (c 0.2, pyridine); IR (KBr) νmax 3454,
3374, 2925, 1722, 1463 cm-1
;
1H NMR (CDCl3, 400 MHz) δ
NP050179X