K. Sakthivel, P. D. Cook / Tetrahedron Letters 46 (2005) 3883–3887
3887
11. Sartorelli and co-workers reported (Ref. 7b), however,
that compound 5a produced 4a upon reaction with
hydrazine under reflux followed by treatment with Raney
Ni.
12. On the basis of a report by Seela and co-workers (Ref.
10b), we anticipated that compound 6c, after oxidation to
6-methanesulfonyl-3-fluoro-3-deazapurine-20-C-methylribo-
side, would react readily with NH3 to give the target
compound 4b.
13. A similar observation has been reported in the literature.
When 2-chloro-5-fluoropyridine was reacted with aqueous
NH4OH at 180 °C, the 5-fluoro substituent was most
readily displaced. See: Hand, E. S.; Baker, D. C. Synthesis
1989, 905–908.
14. (a) When the 2,6-difluoro-3-deazapurine or 2,6-dichloro-3-
deazapurine ribonucleosides were reacted with NH3, only
the 6-halogen substituents were displaced to give 2-fluoro-
3-deazaadenosine and 2-chloro-3-deazaadenosine, respec-
tively (see Refs. 7b and 10); (b) May, J. A.; Townsend, L.
B. Nucl. Acid Chem. 1978, 2, 693–699; (c) Robins, M. J.;
Basom, G. L. Can. J. Chem. 1973, 51, 3161–3169; (d)
Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J.
C.; Dinh, Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am.
Chem. Soc. 2001, 123, 7779–7787; (e) Ding, S.; Gray, N.
S.; Ding, Q.; Schultz, P. G. Tetrahedron Lett. 2001, 42,
8751–8755.
References and notes
1. (a) Welch, T.; Eswarakrishnan, S. Fluorine in Bioorganic
Chemistry; Wiley-Interscience: New York, 1991, and
references cited therein; (b) Mikami, K.; Itoh, Y.; Yama-
naka, M. Chem. Rev. 2004, 104, 1–16.
2. (a) Park, B. K.; Kitteringham, N. R.; OÕNeil, P. M. Annu.
Rev. Pharmacol. Toxicol. 2001, 41, 443–470; (b) Man, H.;
Corral, L. G.; Stirrling, D. I.; Muller, G. W. Bioorg. Med.
Chem. Lett. 2003, 13, 3415–3417; (c) Kool, E. T. Acc.
Chem. Res. 2002, 35, 936–943, and references cited therein;
(d) Dai, Q.; Piccirilli, J. A. Org. Lett. 2003, 5, 807–810,
and reference cited therein; (e) Lai, J. S.; Kool, E. T. J.
Am. Chem. Soc. 2004, 126, 3040–3041; (f) Robins, M. J.;
MacCoss, M.; Naik, S. R.; Ramani, G. J. Am. Chem. Soc.
1976, 98, 7381–7389; (g) Blackburn, G. M.; Brown, D.;
Martin, S. J.; Parratt, M. J. J. Chem. Soc., Perkin Trans. 1
1987, 181–186.
3. Eldrup, A. B.; Prhavc, M.; Brooks, J.; Bhat, B.; Prakash,
T. P.; Song, Q.; Bera, S.; Bhat, N.; Dande, P.; Cook, P. D.;
Cook, P. D.; Bennet, C. F.; Carrol, S. S.; Ball, R. G.;
Bosserman, M.; Burlein, C.; Colwell, L. F.; Fay, J. F.;
Flores, O. A.; Getty, K.; LaFamina, R. L.; Leone, J.;
MacCoss, M.; McMasters, D. R.; Tomassini, J. E.;
Langen, D. V.; Wolanski, B.; Olseon, D. B. J. Med.
Chem. 2004, 47, 5284–5297.
15. (a) The direct SNAr amination of 2-halopyridine with
lithium aminoborohydride proceeds in the following order
of reactivity: 2-F-pyridine > 2-Br-pyridine > 2-Cl-pyri-
dine. See: Thomas, S.; Roberts, S.; Pasumansky, L.;
Gamsey, S.; Singaram, B. Org. Lett. 2003, 5, 3867–3870;
(b) Smith, M. B.; March, J. In Advanced Organic
Chemistry, 5th ed.; Wiley Inter-Science: New York,
2001; Chapter 13, p 851.
16. Deazapurines are more electron rich than the correspond-
ing purines. See Refs. 7a and 9a.
17. Yazaki, A.; Niino, Y.; Ohshita, Y.; Hirao, Y.; Amano, H.;
Hayashi, N.; Kuramoto, Y. Intl. Patent Appl. WO 97/
11068, 1997.
18. Kroon, C.; van den Brink, A. M.; Vlietstra, E. J.;
Salemink, C. A. Recl. Trav. Chim Pays-Bas 1976, 95, 127.
19. (a) Wolfe, M. S.; Harry-Okuru, R. E. Tetrahedron Lett.
1995, 36, 7611–7614; (b) Harry-OÕkuru, R. E.; Smith, J.
M.; Wolfe, M. S. J. Org. Chem. 1997, 62, 1754–
1759.
4. (a) Ueland, P. M. Pharmacol. Rev. 1982, 34, 223–253; (b)
Prus, K. L.; Wolberg, G.; Keller, P. M.; Fyfe, J. A.;
Stopford, C. R.; Zimmerman, T. P. Biochem. Pharmacol.
1989, 38, 509–517.
5. (a) Shim, J.; Larson, G.; Lai, V.; Naim, S.; Wu, J. Z.
Antiviral Res. 2003, 58, 243–251; (b) Ismaili, H.; Moulay,
A.; Cheng, Y.; Lavalle, J.; Siddiqui, A.; Storrer, R. Intl.
Patent Appl. WO 01/60315, 2001; (c) Kumar, A.; Khan, S.
I.; Manglani, A.; Khan, Z. K.; Katti, S. B. Nucleos.
Nucleot. 1994, 13, 1049–1058, and references cited therein.
6. (a) Eldrup, A. B.; Allerson, C. R.; Bennet, C. F.; Bera, S.;
Bhat, B.; Bosserman, M.; Brooks, J.; Burlein, C.; Carrol,
S. S.; Cook, P. D.; Getty, K. L.; MacCoss, M.; McMas-
ters, D. R.; Olseon, D. B.; Prakash, T. P.; Prhavc, M.;
Song, Q.; Tomassini, J. E.; Xia, J. J. Med. Chem. 2004, 47,
2283–2295; (b) Sommadossi, J. P.; Lacolla, P. Intl. Patent
Appl. WO 01/92282, 2001.
7. (a) Minakawa, N.; Kojima, N.; Matsuda, A. J. Org.
Chem. 1999, 64, 7158–7172; (b) Liu, M. C.; Luo, M. Z.;
Mozdziesz, D. E.; Lin, T. S.; Dutschman, G. E.; Gullen, E.
A.; Cheng, Y. C.; Sartorelli, A. C. Nucleos. Nucleot.
Nucleic Acids 2001, 20, 1975–2000.
8. For clarity, we use regular purine base numberings
throughout this manuscript. Imidazo[4,5-c]pyridine num-
berings are provided in the Supplementary data.
9. (a) Rousseau, R. J.; Townsend, L. B.; Robins, R. K.
Biochemistry 1966, 5, 756–760; (b) Srivastava, P. C.;
Robins, R. K.; Meyer, R. B., Jr. In Chemistry of
Nucleosides and Nucleotides; Townsend, L. B., Ed.;
Plenum: New York, 1988; Vol. 1, p 113.
10. Two other methodologies have been reported: (a) May, J.
A.; Townsend, L. B. J. Chem. Soc., Chem. Commun. 1973,
64–65; (b) Seela, F.; Grein, T.; Samnick, S. Helv. Chim.
Acta 1992, 75, 1639–1650.
20. Rhie, S. Y.; Pfleiderer, W. Nucleos. Nucleot. 1994, 13,
1425–1452.
21. Niedballa, U.; Vorbruggen, H. J. J. Org. Chem. 1974, 39,
3654–3660.
¨
22. Franchetti, P. F.; Cappellacci, S. M.; Trincavelli, L.;
Martini, C.; Mazzoni, M. R.; Lucacchini, A.; Grifantini,
M. J. Med. Chem. 1998, 41, 1708–1715.
23. To avoid the possibility of attack by a methoxy nucleo-
phile, we did not use saturated methanolic ammonia
solution.
24. (a) Montgomery, J. A.; Shortnacy, A. T.; Clayton, S. D. J.
Heterocycl. Chem. 1977, 14, 195–197; (b) Poonian, M. S.;
McComas, W. W. J. Med. Chem. 1979, 22, 958–962.
25. Volpini, R.; Camaioni, E.; Costanzi, S.; Vittori, S.;
Cristalli, G. Helv. Chim. Acta 1998, 81, 2326–2331.