Organometallics
Communication
(b) Wedler, M.; Knosel, F.; Edelmann, F. T.; Behrens, U. Chem. Ber.-
Recl. 1992, 125, 1313−1318.
counterion is introduced, its interaction with the metal induces
the removal of the furyl from the metal to the MAO, again
allowing the formation of an atactic polymer. Surprisingly, the
addition of the cocatalyst TTPB to the catalytic mixtures
generated by complexes 5−8 with MAO (M:MAO = 1:1000) did
not influence the activity of the complexes or the stereoregularity
of the resulting polypropylenes. Unfortunately, our attempts to
isolate titanium complexes with two amidinates as ancillary
ligands and alkyls as labile groups (−CH2Ph, −Me), in order to
further investigate the catalyst behavior, led to a rapid
decomposition of the resulting complexes. Switching to the
more stable metal precursor Ti(CH2TMS)4 yielded no reactions
at room temperature, and higher reaction temperatures caused
decomposition of the resulting species.
(3) Duchateau, R.; van Wee, C.; Meetsma, A.; van Duijnen, P. Th.;
Teuben, J. H. Organometallics 1996, 15, 2279−2290.
(4) (a) Edelmann, F. T. Adv. Organomet. Chem. 2008, 57, 183−352.
(b) Collins, S. Coord. Chem. Rev. 2011, 255, 118−138. (c) Edelmann, F.
T. Struct. Bonding (Berlin) 2010, 137, 109−163.
(5) (a) Volkis, V.; Shmulinson, M.; Averbuj, C.; Lisovskii, A.;
Edelmann, F. T.; Eisen, M. S. Organometallics 1998, 17, 3155−3157.
(b) Sita, L. R.; Babcock, J. R. Organometallics 1998, 17, 5228−5230.
(c) Zhang, Y.; Sita, L. R. Chem. Commun. 2003, 2358−2359.
(d) Kissounko, D. A.; Zabalov, M. V.; Brusova, G. P.; Lemenovskii, D.
A. Rus. Chem. Rev. 2006, 75, 351−374.
(6) Volkis, V.; Nelkenbaum, E.; Lisovskii, A.; Hasson, G.; Semiat, R.;
Kapon, M.; Botoshansky, M.; Eishen, Y.; Eisen, M. S. J. Am. Chem. Soc.
2003, 125, 2179−2194.
Titanium bis(amidinate) complexes bearing different elec-
tron-donating motifs as a pendant arm were prepared and
demonstrated stereospecific behavior in the polymerization of
propylene. The complexes showed a correlation among the
nucleophilicity of the pendant arm, the activity of the formed
catalyst, and the stereoregularity of the resulting polymers. The
highest activity and lowest percent mmmm was obtained for the
complex containing a furyl pendant arm (9), followed by
pyridine (6−8), reaching the maximum stereospecificity and the
lowest activity for the complex with the NMe2 pendant arm (5).
The mechanism responsible for the stereoregularity of the
resulting polymers was chain-end control, leading to isotactic
polypropylene at room temperature. Decreasing the ratio
between complex 9 and MAO led to an increase of the complex
activity, and the major fraction of the resulting polypropylene
was obtained as a highly isotactic material. Addition of the TTPB
cocatalyst to the active mixture of 9 and MAO results in a
dramatic increase in catalyst reactivity, leading however to
stereoirregular elastomeric polypropylene as a single product.
(7) (a) Volkis, V.; Lisovskii, A.; Tumanskii, B.; Shuster, M.; Eisen, M. S.
Organometallics 2006, 25, 2656−2666. (b) Aharonovich, S.; Volkis, V.;
Eisen, M. S. Macromol. Symp. 2007, 260, 165−171.
(8) (a) Aharonovich, S.; Botoshansky, M.; Balazs, Y. S.; Eisen, M. S.
Organometallics 2012, 31 (8), 3435−3438. (b) Aharonovich, S. Hetero-
aza-allyl Complexes of Li, Ti, Zr, and V: Structure, Reactivity and
Catalytic Propylene Polymerization. Ph.D Thesis, Technion-Israel
Institute of Technology, 2010.
(9) Elkin, T.; Aharonovich, S.; Botoshansky, M.; Eisen, M. S.
Organometallics 2012, 31, 7404−7414.
(10) Elkin, T.; Kulkarni, N.; Botoshansky, M.; Tumanskii, B.; Eisen, M.
S. Organometallics 2013, 32, 6337−6352.
(11) (a) Volkis, V.; Aharonovich, S.; Eisen, M. S. Macromol. Res. 2010,
18, 967−973. (b) Volkis, V.; Lisovskii, A.; Tumanskii, B.; Shuster, M.;
Eisen, M. S. Organometallics 2006, 25, 2656−2666.
(12) Wu, K.-M.; Huang, C.-A.; Peng, K.-F.; Chen, C.-T. Tetrahedron
2005, 61, 9679−9687.
(13) Kincaid, K.; Gerlach, C. P.; Giesbrecht, G. R.; Hagadorn, J. R.;
Whitener, G. D.; Shafir, A.; Arnold, J. Organometallics 1999, 18, 5360−
5366.
(14) Brandsma, M. J. R.; Brussee, E. A. C.; Meetsma, A.; Hessen, B.;
Teuben, J. H. Eur. J. Inorg. Chem. 1998, 1867−1870.
(15) Boyd, C. L.; Guiducci, A. E.; Dubberley, S. R.; Tyrrell, B. R.;
Mountford, P. Dalton Trans. 2002, 4175−4184.
ASSOCIATED CONTENT
■
S
* Supporting Information
(16) (a) Smolensky, E.; Kapon, M.; Woollins, J. D.; Eisen, M. S.
Organometallics 2005, 24 (13), 3255−3265. (b) Ward, B. D.; Risler, H.;
Weitershaus, K.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H.
Inorg. Chem. 2006, 45 (19), 7777−7787. (c) Cortright, S. B.; Huffman, J.
C.; Yoder, R. A.; Coalter, J. N.; Johnston, J. N. Organometallics 2004, 23
(10), 2238−2250. (d) Dawson, D. M.; Walker, D. A.; Thornton-Pett,
M.; Bochmann, M. Dalton Trans. 2000, 4, 459−466.
(17) Makio, H.; Fujita, T. Acc. Chem. Res. 2009, 42 (10), 1532−1544.
(18) Berionni, G.; Maji, B.; Knochel, P.; Mayr, H. Chem. Sci. 2012, 3,
878−882.
(19) Ghiotto, F.; Pateraki, C.; Tanskanen, J.; Severn., J. R.; Luehmann,
N.; Kusmin, A.; Stellbrink, J.; Linnolahti, M.; Bochmann, M.
Organometallics 2013, 32, 3354−3362.
(20) (a) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355−6364.
(b) Small, B. L.; Brookhart, M. Macromolecules 1999, 32, 2120−2130.
(c) Azoulay, J. D.; Gao, H.; Kortez, Z. A.; Kehr, G.; Erker, G.; Shimizu,
F.; Galland, G. B.; Bazan, G. C. Macromolecules 2012, 45, 4487−4493.
(d) Coates, G. W. Chem. Rev. 2000, 100, 1223−1252.
(21) Furuyama, R.; Saito, J.; Ishii, S.-I.; Mitani, M.; Matsui, S.; Tohi, Y.;
Makio, H.; Matsukawa, N.; Tanaka, H.; Fujita, T. J. Mol. Catal. A: Chem.
2003, 200, 31−42.
Text, figures, tables, and CIF files giving details of the syntheses
and characterization data for the ligands, complexes, and
polymers and crystallographic data for the ligands and
complexes. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
§Deceased on September 25, 2013.
ACKNOWLEDGMENTS
■
This research was supported by the USA-Israel Binational
Science Foundation under Contract 2010109.
REFERENCES
■
(1) (a) Bai, S.-D.; Guan, F.; Hu, M.; Yuan, S.-F.; Guo, J.-P.; Liu, D.-S.
Dalton Trans. 2011, 40, 7686−7688. (b) Multani, K.; Stanlake, L. J. E.;
Stephan, D. W. Dalton Trans. 2010, 39, 8957−8966. (c) Zhang, W.; Sita,
L. J. Am. Chem. Soc. 2008, 130, 422−443. (d) Sun, J.-F.; Chen, S.-J.;
Duan, Y.; Li, Y.-Zh; Chen, X.-T.; Xue, Z.-L. Organometallics 2009, 28,
3088−3092.
(2) (a) Recknagel, A.; Knosel, F.; Gornitzka, H.; Noltemeyer, M.;
Edelmann, F. T.; Behrens, U. J. Organomet. Chem. 1991, 417, 363−375.
D
dx.doi.org/10.1021/om401165g | Organometallics XXXX, XXX, XXX−XXX