pioneering contributions by the groups of Buchwald7 and
Hartwig.8 The copper-catalyzed Ullmann reaction (N-aryla-
tion of amines) and Goldberg reaction (N-arylation of
amides) have been the subject of recent studies.9-14 Copper-
catalyzed intramolecular N-arylation of amines leading to a
seven-membered ring has been reported from the groups of
Ma15a and Fukuyama,15b respectively. Banfi and co-workers
have elegantly demonstrated such a possibility for the
preparation of 7-membered heterocycles employing a ring
expansion of a R-lactam with a neighboring nitrogen
nucleophile.16 Both palladium- and copper-catalyzed in-
tramolecular N-arylations leading to 5-, 6-, and to a lesser
extent, 7-membered rings have been investigated, and various
efficient catalytic systems have been developed.15,17 However,
most of the attempts to access medium- and large-sized ring
systems by direct N-arylation were, to the best of our
knowledge, unsuccessful. Recently, domino copper-catalyzed
intermolecular N-arylation of R-lactam followed by ring
expansion has been developed for the synthesis of medium-
sized nitrogen heterocycles by Buchwald and co-workers.18
Zhu and co-workers have developed a novel catalytic domino
process to construct azaphenanthrenes fused to 8-, 10-, 11-,
and 13-membered lactam motifs, where the bisaryl diiodide
function plays the crucial role in the cyclization of amides.19
In this paper, our copper-catalyzed results are presented on
the development of novel and generally applicable methods
applying N-arylation of phosphoramidates and carbamates
to provide the closure of medium- and large-sized nitrogen
heterocycles.
N-Phosphorylation of various unnatural amino acids and
the peptide Ala-Pro was carried out via the Antherton-Todd
method (Scheme 1).20 Reaction of diisopropyl phosphite (1)
Scheme 1. Synthetic Route of Medium- and Large-Sized
Nitrogen Heterocycles
with amino acids (2a-f) or peptide Ala-Pro (2g) in water
and ethanol in the presence of carbon tetrachloride and
triethylamine provided N-diisopropylphosphoamino acids
(DIPP-AA) (3a-f) and peptide (DIPP-peptide) (3g) (Figure
1) in 85-89% yields. N-Boc-amino acids (N-tert-butoxy-
(5) (a) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007. (b) Saxon,
E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2, 2141. (c) Saxon,
E.; Luchansky, S. J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R. J.
Am. Chem. Soc. 2002, 124, 14893.
(6) (a) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2,
1939. (b) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2001, 3,
9. (c) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Org. Chem. 2002,
67, 4993.
(7) (a) Wolfe, J. P.; Wagaw; S.; Marcoux, J. F.; Buchwald, S. F. Acc.
Chem. Res. 1998, 31, 805. (b) Yang, B. H.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125.
(8) (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (b) Hartwig,
J. F. In Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim,
2000; Chapter 7.
(9) Ley, S.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(10) (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
581. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793 and
references therein.
(11) Klapars, A.; Antila, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727.
(12) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 7421.
(13) Kang, S.-K.; Kim, D.-H.; Pak, J.-N. Synlett 2002, 427.
(14) (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc.
1998, 120, 12459. (b) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.
(15) Copper-catalyzed: (a) Ma, D.; Xia, C. Org. Lett. 2001, 2, 2583.
(b) Yamada, K.; Kubo, T.; Tokuyama, H.; Fukuyama, T. Synlett 2002, 231.
(16) (a) Banfi, L.; Guanti, G.; Rasparini, M. Tetrahedron Lett. 1998,
39, 9539. (b) Banfi, L.; Guanti, G.; Rasparini, M. Eur. J. Org. Chem. 2003,
1319.
(17) Palladium-catalyzed: (a) Wolfe, J. P.; Rennels, R. A.; Buchwald,
S. L. Tetrahedron 1996, 52, 7525. (b) Wagaw, S.; Rennels, R. A.; Buchwald,
S. L. J. Am. Chem. Soc. 1997, 119, 8451. (c) Yang, B. H.; Buchwald, S. L.
Org. Lett. 1999, 1, 35. (d) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519.
(e) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133. (f) Margolis, B. J.;
Swidorski, J. J.; Rogers, B. N. J. Org. Chem. 2003, 68, 644. (g) Nozaki,
K.; Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H.-Z.; Fujiki, M.;
Yamaguchi, S.; Tamao, K. Angew. Chem., Int. Ed. 2003, 42, 2051. (h) Brain,
C. T.; Steer, J. T. J. Org. Chem. 2003, 68, 6814.
Figure 1. Synthesized compounds 3a-i
carbonylamino acids) (3h and 3i) were also prepared
according to the general procedure.21 Coupling of N-
phosphoamino acids and peptide or N-Boc-amino acids with
2-bromoaniline in pyridine using 2 equiv of diphenyl
phosphite (DPP) as the coupling agent according to the
reported procedure22,23 gave phosphoramidates and N-Boc-
peptide analogues (4) in 65-95% yields.
The cyclization of phosphoramidates and carbamates via
N-arylation is the key step. We first attempted the cyclization
of compound 4b in toluene under catalysis of CuI using
proline as the ligand (Scheme 1). TLC showed that it
transferred into the eight-membered cyclic product 5b within
72 h, and isolation by silica gel column chromatography
(20) Ji, G. J.; Xue, C. B.; Zeng, J. N.; Li, L. P.; Chai, W. G.; Zhao, Y.
F. Synthesis 1988, 444.
(18) Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am.
Chem. Soc. 2004, 126, 3529.
(19) Cuny, G.; Bois-Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2004, 126,
14475.
(21) Ejim, L.; Mirza, I. A.; Capone, C.; Nazi, I.; Jenkins, S.; Chee, G.-
L.; Berghuisb, A. M.; Wrighta, G. D. Bioorg. Med. Chem. 2004, 12, 3825.
(22) Yamazaki, N.; Higashi, F. Tetrahedron Lett. 1972, 5047.
(23) Yamazaki, N.; Higashi, F. Tetrahedron 1974, 30, 1323.
4782
Org. Lett., Vol. 7, No. 21, 2005